|
@@ -54,7 +54,7 @@ class LightGBM(object):
|
|
|
self.flag = flag
|
|
|
self.dt = dt
|
|
|
|
|
|
- def read_data(self, path):
|
|
|
+ def read_data(self, path, yc=None):
|
|
|
"""
|
|
|
Read data from local
|
|
|
:return:
|
|
@@ -62,8 +62,9 @@ class LightGBM(object):
|
|
|
df = pd.read_json(path)
|
|
|
df = df.dropna(subset=['label'])
|
|
|
labels = df['label']
|
|
|
- temp = sorted(labels)
|
|
|
- yc = temp[int(len(temp) * 0.7)]
|
|
|
+ if not yc:
|
|
|
+ temp = sorted(labels)
|
|
|
+ yc = temp[int(len(temp) * 0.7)]
|
|
|
print("阈值", yc)
|
|
|
labels = [0 if i < yc else 1 for i in labels]
|
|
|
features = df.drop("label", axis=1)
|
|
@@ -153,7 +154,7 @@ class LightGBM(object):
|
|
|
"""
|
|
|
fw = open("result/summary_{}.txt".format(dt), "a+", encoding="utf-8")
|
|
|
path = 'data/predict_data/predict_{}.json'.format(dt)
|
|
|
- x, y = self.read_data(path)
|
|
|
+ x, y = self.read_data(path, yc=6)
|
|
|
bst = lgb.Booster(model_file=self.model)
|
|
|
y_pred = bst.predict(x, num_iteration=bst.best_iteration)
|
|
|
temp = sorted(list(y_pred))
|