|
@@ -141,7 +141,7 @@ class LightGBM(object):
|
|
|
y_pred = bst.predict(x, num_iteration=bst.best_iteration)
|
|
|
pred_score_df = pd.DataFrame(list(y_pred), columns=['pred_score'])
|
|
|
temp = sorted(list(y_pred))
|
|
|
- yuzhi = temp[int(len(temp) * 0.75) - 1]
|
|
|
+ yuzhi = temp[int(len(temp) * 0.5) - 1]
|
|
|
y_pred_binary = [0 if i <= yuzhi else 1 for i in list(y_pred)]
|
|
|
pred_label_df = pd.DataFrame(list(y_pred_binary), columns=['pred_label'])
|
|
|
score_list = []
|
|
@@ -179,7 +179,7 @@ class LightGBM(object):
|
|
|
for name, imp in feature_importance:
|
|
|
print(name, imp)
|
|
|
|
|
|
-# "cat summary_20240328.txt | awk -F "\t" '{print $1" "$3}'| /root/AUC/AUC/AUC"
|
|
|
+# "cat summary_20240326.txt | awk -F "\t" '{print $1" "$3}'| /root/AUC/AUC/AUC"
|
|
|
"""
|
|
|
ossutil64 cp /root/luojunhui/alg/data/predict_data/spider_predict_result_20240330.xlsx oss://art-pubbucket/0temp/
|
|
|
"""
|