罗俊辉 1 vuosi sitten
vanhempi
commit
0f15e38f3d
2 muutettua tiedostoa jossa 5 lisäystä ja 4 poistoa
  1. 5 4
      main.py
  2. 0 0
      test3.py

+ 5 - 4
main.py

@@ -45,12 +45,12 @@ float_cols = [
     ]
 with open("whole_data/x_data.json") as f1:
     x_list = json.loads(f1.read())
-    X_train = pd.DataFrame(x_list[:10000], columns=my_c)
+    X_train = pd.DataFrame(x_list[:15000], columns=my_c)
     for key in str_cols:
         X_train[key] = label_encoder.fit_transform(X_train[key])
     for key in float_cols:
         X_train[key] = pd.to_numeric(X_train[key], errors='coerce')
-    X_test = pd.DataFrame(x_list[10000:], columns=my_c)
+    X_test = pd.DataFrame(x_list[15000:], columns=my_c)
     for key in str_cols:
         X_test[key] = label_encoder.fit_transform(X_test[key])
     for key in float_cols:
@@ -59,8 +59,9 @@ with open("whole_data/x_data.json") as f1:
 
 with open("whole_data/y_data.json") as f2:
     y_list = json.loads(f2.read())
-    y_train = np.array(y_list[:10000])
-    y_test = np.array(y_list[10000:])
+    y__list = [0 if i <= 25 else 1 for i in y_list]
+    y_train = np.array(y__list[:15000])
+    y_test = np.array(y__list[15000:])
 
 # 创建LightGBM数据集
 train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=['uid', 'type', 'channel', 'mode'])

+ 0 - 0
test3.py