publishCategoryArticles.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. """
  2. @author: luojunhui
  3. 品类文章发布到aigc系统的冷启层
  4. """
  5. import datetime
  6. import json
  7. import time
  8. import traceback
  9. from pandas import DataFrame
  10. from applications import aiditApi, log, bot
  11. from config import apolloConfig
  12. apollo = apolloConfig()
  13. class CategoryColdStartTask(object):
  14. """
  15. 品类冷启动发布任务
  16. """
  17. PUBLISHED_STATUS = 2
  18. INIT_STATUS = 1
  19. BAD_STATUS = 0
  20. def __init__(self, db_client):
  21. """
  22. :param db_client:
  23. """
  24. self.db_client = db_client
  25. self.category_map = json.loads(apollo.getConfigValue("category_cold_start_map"))
  26. self.category_cold_start_threshold = json.loads(apollo.getConfigValue("category_cold_start_threshold"))
  27. self.READ_THRESHOLD = self.category_cold_start_threshold.get("READ_THRESHOLD", 5000)
  28. self.READ_TIMES_THRESHOLD = self.category_cold_start_threshold.get("READ_TIMES_THRESHOLD", 1.3)
  29. self.LIMIT_TITLE_LENGTH = self.category_cold_start_threshold.get("LIMIT_TITLE_LENGTH", 15)
  30. self.TITLE_LENGTH_MAX = self.category_cold_start_threshold.get("TITLE_LENGTH_MAX", 50)
  31. log(
  32. task="category_publish_task",
  33. function="__init__",
  34. message="数据库初始化连接完成,apollo配置获取完成",
  35. data={
  36. "category": self.category_map,
  37. "threshold": self.category_cold_start_threshold
  38. }
  39. )
  40. def insert_into_db(self, crawler_plan_id, crawler_plan_name, create_timestamp):
  41. """
  42. 插入抓取计划到数据库中
  43. :param create_timestamp:
  44. :param crawler_plan_id:
  45. :param crawler_plan_name:
  46. :return:
  47. """
  48. insert_sql = f"""
  49. INSERT INTO article_crawler_plan
  50. (crawler_plan_id, name, create_timestamp)
  51. values
  52. (%s, %s, %s)
  53. """
  54. try:
  55. self.db_client.update(
  56. sql=insert_sql,
  57. params=(crawler_plan_id, crawler_plan_name, create_timestamp)
  58. )
  59. except Exception as e:
  60. bot(
  61. title="品类冷启任务,记录抓取计划id失败",
  62. detail={
  63. "error": str(e),
  64. "error_msg": traceback.format_exc(),
  65. "crawler_plan_id": crawler_plan_id,
  66. "crawler_plan_name": crawler_plan_name
  67. }
  68. )
  69. def get_articles_from_meta_table(self, category, article_source):
  70. """
  71. 从长文 meta 库中获取冷启文章
  72. :return:
  73. """
  74. sql = f"""
  75. SELECT
  76. article_id, out_account_id, article_index, title, link, read_cnt, status, llm_sensitivity
  77. FROM
  78. crawler_meta_article
  79. WHERE
  80. category = "{category}" and platform = "{article_source}";
  81. """
  82. article_list = self.db_client.select(sql)
  83. log(
  84. task="category_publish_task",
  85. function="get_articles_from_meta_table",
  86. message="获取品类文章总数",
  87. data={
  88. "total_articles": len(article_list),
  89. "category": category
  90. }
  91. )
  92. article_df = DataFrame(article_list,
  93. columns=['article_id', 'gh_id', 'position', 'title', 'link', 'read_cnt', 'status', 'llm_sensitivity'])
  94. return article_df
  95. def change_article_status(self, category):
  96. """
  97. 已经发布到生成计划中的 id,
  98. :return:
  99. """
  100. plan_id = self.category_map.get(category)
  101. if plan_id:
  102. article_list = aiditApi.get_generated_article_list(plan_id)
  103. title_list = [i[1] for i in article_list]
  104. if title_list:
  105. # update
  106. update_sql = f"""
  107. UPDATE
  108. crawler_meta_article
  109. SET
  110. status = %s
  111. WHERE
  112. title in %s and status = %s;
  113. """
  114. self.db_client.update(
  115. sql=update_sql,
  116. params=(self.PUBLISHED_STATUS, tuple(title_list), self.INIT_STATUS)
  117. )
  118. else:
  119. return
  120. def change_article_status_while_publishing(self, article_id_list):
  121. """
  122. :param: article_id_list: 文章的唯一 id
  123. :return:
  124. """
  125. update_sql = f"""
  126. UPDATE
  127. crawler_meta_article
  128. SET
  129. status = %s
  130. WHERE
  131. article_id in %s and status = %s;
  132. """
  133. affect_rows = self.db_client.update(
  134. sql=update_sql,
  135. params=(self.PUBLISHED_STATUS, tuple(article_id_list), self.INIT_STATUS)
  136. )
  137. if affect_rows != len(article_id_list):
  138. bot(
  139. title="品类冷启任务中,出现更新状文章状态失败异常",
  140. detail={
  141. "affected_rows": affect_rows,
  142. "task_rows": len(article_id_list)
  143. }
  144. )
  145. def filter_weixin_articles(self, articles_df, category):
  146. """
  147. 微信抓取文章过滤漏斗
  148. """
  149. articles_df['average_read'] = articles_df.groupby(['gh_id', 'position'])['read_cnt'].transform('mean')
  150. articles_df['read_times'] = articles_df['read_cnt'] / articles_df['average_read']
  151. total_length = articles_df.shape[0]
  152. # 第0层过滤已经发布的文章
  153. filter_df = articles_df[articles_df['status'] == self.INIT_STATUS]
  154. length_level0 = filter_df.shape[0]
  155. # 第一层漏斗通过阅读均值倍数过滤
  156. filter_df = filter_df[filter_df['read_times'] >= self.READ_TIMES_THRESHOLD]
  157. length_level1 = filter_df.shape[0]
  158. # 第二层漏斗通过阅读量过滤
  159. filter_df = filter_df[
  160. filter_df['read_cnt'] >= self.READ_THRESHOLD
  161. ]
  162. length_level2 = filter_df.shape[0]
  163. # 第三层漏斗通过标题长度过滤
  164. filter_df = filter_df[
  165. (filter_df['title'].str.len() >= self.LIMIT_TITLE_LENGTH)
  166. & (filter_df['title'].str.len() <= self.TITLE_LENGTH_MAX)
  167. ]
  168. length_level3 = filter_df.shape[0]
  169. # 第四层通过敏感词过滤
  170. filter_df = filter_df[
  171. (~filter_df['title'].str.contains('农历'))
  172. & (~filter_df['title'].str.contains('太极'))
  173. & (~filter_df['title'].str.contains('节'))
  174. & (~filter_df['title'].str.contains('早上好'))
  175. & (~filter_df['title'].str.contains('赖清德'))
  176. & (~filter_df['title'].str.contains('普京'))
  177. & (~filter_df['title'].str.contains('俄'))
  178. & (~filter_df['title'].str.contains('南海'))
  179. & (~filter_df['title'].str.contains('台海'))
  180. & (~filter_df['title'].str.contains('解放军'))
  181. & (~filter_df['title'].str.contains('蔡英文'))
  182. & (~filter_df['title'].str.contains('中国'))
  183. ]
  184. length_level4 = filter_df.shape[0]
  185. # 第五层通过LLM敏感度过滤
  186. filter_df = filter_df[
  187. ~(filter_df['llm_sensitivity'] > 0)
  188. ]
  189. length_level5 = filter_df.shape[0]
  190. log(
  191. task="category_publish_task",
  192. function="publish_filter_articles",
  193. message="过滤后文章总数",
  194. data={
  195. "total_articles": length_level5,
  196. "category": category
  197. }
  198. )
  199. bot(
  200. title="冷启任务发布通知",
  201. detail={
  202. "总文章数量": total_length,
  203. "通过已经发布状态过滤": "过滤数量: {} 剩余数量: {}".format(
  204. total_length - length_level0, length_level0),
  205. "通过阅读均值倍数过滤": "过滤数量: {} 剩余数量: {}".format(
  206. length_level0 - length_level1, length_level1),
  207. "通过阅读量过滤": "过滤数量: {} 剩余数量: {}".format(
  208. length_level1 - length_level2, length_level2),
  209. "通过标题长度过滤": "过滤数量: {} 剩余数量: {}".format(
  210. length_level2 - length_level3, length_level3),
  211. "通过敏感词过滤": "过滤数量: {} 剩余数量: {}".format(
  212. length_level3 - length_level4, length_level4),
  213. "通过LLM敏感度过滤": "过滤数量: {} 剩余数量: {}".format(
  214. length_level4 - length_level5, length_level5
  215. ),
  216. "品类": category,
  217. "阅读均值倍数阈值": self.READ_TIMES_THRESHOLD,
  218. "阅读量阈值": self.READ_THRESHOLD,
  219. "标题长度阈值": self.LIMIT_TITLE_LENGTH
  220. },
  221. mention=False
  222. )
  223. return filter_df
  224. def filter_toutiao_articles(self, articles_df, category):
  225. """
  226. 头条文章过滤漏斗
  227. """
  228. total_length = articles_df.shape[0]
  229. # 第一层漏斗通过状态过滤
  230. zero_level_funnel_df = articles_df[articles_df['status'] == self.INIT_STATUS]
  231. zero_level_funnel_length = zero_level_funnel_df.shape[0]
  232. bot(
  233. title="账号冷启动---头条推荐流发布",
  234. detail={
  235. "category": category,
  236. "总文章数量": total_length,
  237. "通过已经发布状态过滤": "过滤数量: {} 剩余数量: {}".format(total_length - zero_level_funnel_length,
  238. zero_level_funnel_length),
  239. },
  240. mention=False
  241. )
  242. return zero_level_funnel_df
  243. def publish_filter_articles(self, category, articles_df, article_source):
  244. """
  245. 过滤文章
  246. :param category: 文章品类
  247. :param articles_df: 该品类下的文章data_frame
  248. :param article_source: 文章来源
  249. :return:
  250. """
  251. match article_source:
  252. case "weixin":
  253. filtered_articles_df = self.filter_weixin_articles(articles_df, category)
  254. input_source_channel = 5
  255. case "toutiao":
  256. filtered_articles_df = self.filter_toutiao_articles(articles_df, category)
  257. input_source_channel = 6
  258. case _:
  259. return
  260. url_list = filtered_articles_df['link'].values.tolist()
  261. if url_list:
  262. # create_crawler_plan
  263. crawler_plan_response = aiditApi.auto_create_crawler_task(
  264. plan_id=None,
  265. plan_name="自动绑定-{}--{}--{}".format(category, datetime.date.today().__str__(), len(url_list)),
  266. plan_tag="品类冷启动",
  267. article_source=article_source,
  268. url_list=url_list
  269. )
  270. log(
  271. task="category_publish_task",
  272. function="publish_filter_articles",
  273. message="成功创建抓取计划",
  274. data=crawler_plan_response
  275. )
  276. # save to db
  277. create_timestamp = int(time.time()) * 1000
  278. crawler_plan_id = crawler_plan_response['data']['id']
  279. crawler_plan_name = crawler_plan_response['data']['name']
  280. self.insert_into_db(crawler_plan_id, crawler_plan_name, create_timestamp)
  281. # auto bind to generate plan
  282. new_crawler_task_list = [
  283. {
  284. "contentType": 1,
  285. "inputSourceType": 2,
  286. "inputSourceSubType": None,
  287. "fieldName": None,
  288. "inputSourceValue": crawler_plan_id,
  289. "inputSourceLabel": crawler_plan_name,
  290. "inputSourceModal": 3,
  291. "inputSourceChannel": input_source_channel
  292. }
  293. ]
  294. generate_plan_response = aiditApi.bind_crawler_task_to_generate_task(
  295. crawler_task_list=new_crawler_task_list,
  296. generate_task_id=self.category_map[category]
  297. )
  298. log(
  299. task="category_publish_task",
  300. function="publish_filter_articles",
  301. message="成功绑定到生成计划",
  302. data=generate_plan_response
  303. )
  304. # change article status
  305. article_id_list = filtered_articles_df['article_id'].values.tolist()
  306. self.change_article_status_while_publishing(article_id_list=article_id_list)
  307. def do_job(self, article_source, category_list=None):
  308. """
  309. 执行任务
  310. :return:
  311. """
  312. if not category_list:
  313. category_list = self.category_map.keys()
  314. log(
  315. task="category_publish_task",
  316. function="do_job",
  317. message="开始自动创建品类文章抓取计划",
  318. data={
  319. "category_list": list(category_list)
  320. }
  321. )
  322. for category in category_list:
  323. try:
  324. category_df = self.get_articles_from_meta_table(category=category, article_source=article_source)
  325. self.publish_filter_articles(
  326. category=category,
  327. articles_df=category_df,
  328. article_source=article_source
  329. )
  330. except Exception as e:
  331. bot(
  332. title="品类冷启任务报错",
  333. detail={
  334. "category": category,
  335. "error": str(e),
  336. "function": "do_job",
  337. "traceback": traceback.format_exc()
  338. }
  339. )