123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- """
- @author: luojunhui
- """
- import json
- import time
- import datetime
- import pandas as pd
- import traceback
- from pandas import DataFrame
- from tqdm import tqdm
- from applications import log, aiditApi, bot
- from applications.const import ColdStartTaskConst
- from config import apolloConfig
- const = ColdStartTaskConst()
- config = apolloConfig()
- category_cold_start_threshold = json.loads(config.getConfigValue("category_cold_start_threshold"))
- READ_TIMES_THRESHOLD = category_cold_start_threshold.get("READ_TIMES_THRESHOLD", 1.3)
- READ_THRESHOLD = category_cold_start_threshold.get("READ_THRESHOLD", 5000)
- LIMIT_TITLE_LENGTH = category_cold_start_threshold.get("LIMIT_TITLE_LENGTH", 15)
- TITLE_LENGTH_MAX = category_cold_start_threshold.get("TITLE_LENGTH_MAX", 50)
- def get_article_from_meta_table(db_client, category: str, platform: str) -> DataFrame:
- """
- get article from meta data
- :param db_client: database connector
- :param category: article category
- :param platform: article platform
- :return: article dataframe
- """
- sql = f"""
- select
- article_id, out_account_id, article_index, title, link, read_cnt, status, llm_sensitivity, score
- from crawler_meta_article
- where category = "{category}" and platform = "{platform}" and title_sensitivity = {const.TITLE_NOT_SENSITIVE}
- order score desc;
- """
- article_list = db_client.fetch(sql)
- log(
- task="category_publish_task",
- function="get_articles_from_meta_table",
- message="获取品类文章总数",
- data={
- "total_articles": len(article_list),
- "category": category
- }
- )
- article_df = pd.DataFrame(article_list,
- columns=['article_id', 'gh_id', 'position', 'title', 'link', 'read_cnt', 'status',
- 'llm_sensitivity', 'score'])
- return article_df
- def update_published_articles_status(db_client) -> None:
- """
- filter published articles
- """
- category_map = json.loads(config.getConfigValue("category_cold_start_map"))
- category_list = list(category_map.keys())
- processing_bar = tqdm(category_list, desc="fileter_published_articles")
- for category in processing_bar:
- plan_id = category_map.get(category)
- if plan_id:
- article_list = aiditApi.get_generated_article_list(plan_id)
- title_list = [i[1] for i in article_list]
- if title_list:
- update_sql = f"""
- update crawler_meta_article
- set status = %s
- where title in %s and status = %s;
- """
- affected_rows = db_client.save(
- sql=update_sql,
- params=(const.PUBLISHED_STATUS, tuple(title_list), const.INIT_STATUS)
- )
- processing_bar.set_postfix({"category": affected_rows})
- else:
- return
- def filter_by_read_times(article_df: DataFrame) -> DataFrame:
- """
- filter by read times
- """
- article_df['average_read'] = article_df.groupby(['gh_id', 'position'])['read_cnt'].transform('mean')
- article_df['read_times'] = article_df['read_cnt'] / article_df['average_read']
- filter_df = article_df[article_df['read_times'] >= READ_TIMES_THRESHOLD]
- return filter_df
- def filter_by_status(article_df: DataFrame) -> DataFrame:
- """
- filter by status
- """
- filter_df = article_df[article_df['status'] == const.INIT_STATUS]
- return filter_df
- def filter_by_read_cnt(article_df: DataFrame) -> DataFrame:
- """
- filter by read cnt
- """
- filter_df = article_df[article_df['read_cnt'] >= READ_THRESHOLD]
- return filter_df
- def filter_by_title_length(article_df: DataFrame) -> DataFrame:
- """
- filter by title length
- """
- filter_df = article_df[
- (article_df['title'].str.len() >= LIMIT_TITLE_LENGTH)
- & (article_df['title'].str.len() <= TITLE_LENGTH_MAX)
- ]
- return filter_df
- def filter_by_sensitive_words(article_df: DataFrame) -> DataFrame:
- """
- filter by sensitive words
- """
- filter_df = article_df[
- (~article_df['title'].str.contains('农历'))
- & (~article_df['title'].str.contains('太极'))
- & (~article_df['title'].str.contains('节'))
- & (~article_df['title'].str.contains('早上好'))
- & (~article_df['title'].str.contains('赖清德'))
- & (~article_df['title'].str.contains('普京'))
- & (~article_df['title'].str.contains('俄'))
- & (~article_df['title'].str.contains('南海'))
- & (~article_df['title'].str.contains('台海'))
- & (~article_df['title'].str.contains('解放军'))
- & (~article_df['title'].str.contains('蔡英文'))
- & (~article_df['title'].str.contains('中国'))
- ]
- return filter_df
- def filter_by_similarity_score(article_df: DataFrame, score) -> DataFrame:
- """
- filter by similarity score
- """
- filter_df = article_df[article_df['score'] >= score]
- return filter_df
- def insert_into_article_crawler_plan(db_client, crawler_plan_id, crawler_plan_name, create_timestamp):
- """
- insert into article crawler plan
- """
- insert_sql = f"""
- INSERT INTO article_crawler_plan
- (crawler_plan_id, name, create_timestamp)
- values
- (%s, %s, %s)
- """
- try:
- db_client.save(
- query=insert_sql,
- params=(crawler_plan_id, crawler_plan_name, create_timestamp)
- )
- except Exception as e:
- bot(
- title="品类冷启任务,记录抓取计划id失败",
- detail={
- "error": str(e),
- "error_msg": traceback.format_exc(),
- "crawler_plan_id": crawler_plan_id,
- "crawler_plan_name": crawler_plan_name
- }
- )
- def create_crawler_plan(db_client, url_list, plan_tag, platform):
- """
- create crawler plan
- """
- crawler_plan_response = aiditApi.auto_create_crawler_task(
- plan_id=None,
- plan_name="自动绑定-文章联想--{}--{}".format(datetime.date.today().__str__(), len(url_list)),
- plan_tag=plan_tag,
- article_source=platform,
- url_list=url_list
- )
- log(
- task="category_publish_task",
- function="publish_filter_articles",
- message="成功创建抓取计划",
- data=crawler_plan_response
- )
- # save to db
- create_timestamp = int(time.time()) * 1000
- crawler_plan_id = crawler_plan_response['data']['id']
- crawler_plan_name = crawler_plan_response['data']['name']
- insert_into_article_crawler_plan(db_client, crawler_plan_id, crawler_plan_name, create_timestamp)
- bind_to_generate_plan(crawler_plan_id, crawler_plan_name, )
- def bind_to_generate_plan(crawler_plan_id, crawler_plan_name, input_source_channel):
- """
- auto bind to generate plan
- """
- new_crawler_task_list = [
- {
- "contentType": 1,
- "inputSourceType": 2,
- "inputSourceSubType": None,
- "fieldName": None,
- "inputSourceValue": crawler_plan_id,
- "inputSourceLabel": crawler_plan_name,
- "inputSourceModal": 3,
- "inputSourceChannel": input_source_channel
- }
- ]
- category_map = json.loads(config.getConfigValue("category_cold_start_map"))
- generate_plan_response = aiditApi.bind_crawler_task_to_generate_task(
- crawler_task_list=new_crawler_task_list,
- generate_task_id=category_map[category]
- )
- log(
- task="category_publish_task",
- function="publish_filter_articles",
- message="成功绑定到生成计划",
- data=generate_plan_response
- )
|