""" @author: luojunhui """ import os import time import datetime import traceback from pymysql.cursors import DictCursor from tqdm import tqdm from applications import log from applications.api import GoogleAIAPI from applications.const import VideoToTextConst from applications.db import DatabaseConnector from config import long_articles_config from config import apolloConfig from coldStartTasks.ai_pipeline.basic import download_file from coldStartTasks.ai_pipeline.basic import update_task_queue_status from coldStartTasks.ai_pipeline.basic import roll_back_lock_tasks # 办公室网络调试需要打开代理 # os.environ["HTTP_PROXY"] = "http://192.168.100.20:1087" # os.environ["HTTPS_PROXY"] = "http://192.168.100.20:1087" const = VideoToTextConst() config = apolloConfig(env="prod") # pool_size POOL_SIZE = int(config.getConfigValue("video_extract_pool_size")) # batch_size BATCH_SIZE = int(config.getConfigValue("video_extract_batch_size")) class GenerateTextFromVideo(object): """ 从视频中生成文本 """ def __init__(self): self.google_ai_api = GoogleAIAPI() self.db = DatabaseConnector(db_config=long_articles_config) self.db.connect() def get_upload_task_list(self, task_length: int) -> list[dict]: """ 获取上传视频任务,优先处理高流量池视频内容 """ fetch_query = f""" select t1.id, t1.video_oss_path from video_content_understanding t1 join publish_single_video_source t2 on t1.content_trace_id = t2.content_trace_id where t1.upload_status = {const.INIT_STATUS} and t2.video_pool_audit_status = {const.AUDIT_SUCCESS_STATUS} and t2.bad_status = {const.ARTICLE_GOOD_STATUS} order by t2.flow_pool_level limit {task_length}; """ task_list = self.db.fetch(query=fetch_query, cursor_type=DictCursor) return task_list def get_extract_task_list(self) -> list[dict]: """ 获取处理视频转文本任务 """ fetch_query = f""" select id, file_name, video_ori_title from video_content_understanding where upload_status = {const.SUCCESS_STATUS} and understanding_status = {const.INIT_STATUS} order by file_expire_time limit {BATCH_SIZE}; """ task_list = self.db.fetch(query=fetch_query, cursor_type=DictCursor) return task_list def get_processing_task_num(self) -> int: """ get the number of processing task """ select_query = f""" select count(1) as processing_count from video_content_understanding where file_state = 'PROCESSING' and upload_status = {const.SUCCESS_STATUS}; """ fetch_response = self.db.fetch(query=select_query, cursor_type=DictCursor) processing_task_num = ( fetch_response[0]["processing_count"] if fetch_response else 0 ) return processing_task_num def set_upload_result_for_task( self, task_id: str, file_name: str, file_state: str, expire_time: str ) -> int: """ set upload result for task """ update_query = f""" update video_content_understanding set upload_status = %s, upload_status_ts = %s, file_name = %s, file_state = %s, file_expire_time = %s where id = %s and upload_status = %s; """ affected_rows = self.db.save( query=update_query, params=( const.SUCCESS_STATUS, datetime.datetime.now(), file_name, file_state, expire_time, task_id, const.PROCESSING_STATUS, ), ) return affected_rows def set_understanding_result_for_task( self, task_id: str, state: str, text: str ) -> int: update_query = f""" update video_content_understanding set understanding_status = %s, video_text = %s, file_state = %s where id = %s and understanding_status = %s; """ affected_rows = self.db.save( query=update_query, params=( const.SUCCESS_STATUS, text, state, task_id, const.PROCESSING_STATUS, ), ) return affected_rows def upload_video_to_google_ai_task( self, max_processing_video_count: int = POOL_SIZE ): """ upload video to google AI and wait for processing """ # rollback lock tasks rollback_rows = roll_back_lock_tasks( db_client=self.db, process="upload", init_status=const.INIT_STATUS, processing_status=const.PROCESSING_STATUS, max_process_time=const.MAX_PROCESSING_TIME, ) tqdm.write("upload rollback_lock_tasks: {}".format(rollback_rows)) processing_task_num = self.get_processing_task_num() rest_video_count = max_processing_video_count - processing_task_num if rest_video_count: task_list = self.get_upload_task_list(rest_video_count) for task in tqdm(task_list, desc="upload_video_task"): lock_rows = update_task_queue_status( db_client=self.db, task_id=task["id"], process="upload", ori_status=const.INIT_STATUS, new_status=const.PROCESSING_STATUS, ) if not lock_rows: continue try: file_path = download_file(task["id"], task["video_oss_path"]) google_upload_result = self.google_ai_api.upload_file(file_path) if google_upload_result: file_name, file_state, expire_time = google_upload_result self.set_upload_result_for_task( task_id=task["id"], file_name=file_name, file_state=file_state, expire_time=expire_time, ) else: # roll back status update_task_queue_status( db_client=self.db, task_id=task["id"], process="upload", ori_status=const.PROCESSING_STATUS, new_status=const.FAIL_STATUS, ) log( task="video_to_text", function="upload_video_to_google_ai_task", message="upload_video_to_google_ai_task failed", data={ "task_id": task["id"], }, ) except Exception as e: log( task="video_to_text", function="upload_video_to_google_ai_task", message="upload_video_to_google_ai_task failed", data={ "error": str(e), "traceback": traceback.format_exc(), "task_id": task["id"], }, ) # roll back status update_task_queue_status( db_client=self.db, task_id=task["id"], process="upload", ori_status=const.PROCESSING_STATUS, new_status=const.FAIL_STATUS, ) else: log( task="video_to_text", function="upload_video_to_google_ai_task", message="task pool is full", ) def convert_video_to_text_with_google_ai_task(self): """ 处理视频转文本任务 """ rollback_rows = roll_back_lock_tasks( db_client=self.db, process="understanding", init_status=const.INIT_STATUS, processing_status=const.PROCESSING_STATUS, max_process_time=const.MAX_PROCESSING_TIME, ) tqdm.write("extract rollback_lock_tasks: {}".format(rollback_rows)) task_list = self.get_extract_task_list() for task in tqdm(task_list, desc="convert video to text"): # LOCK TASK lock_row = update_task_queue_status( db_client=self.db, task_id=task["id"], process="understanding", ori_status=const.INIT_STATUS, new_status=const.PROCESSING_STATUS, ) if not lock_row: print("Task has benn locked by other process") continue file_name = task["file_name"] video_local_path = "static/{}.mp4".format(task["id"]) try: google_file = self.google_ai_api.get_google_file(file_name) state = google_file.state.name match state: case "ACTIVE": try: video_text = self.google_ai_api.get_video_text( prompt="分析我上传的视频的画面和音频,用叙述故事的风格将视频所描述的事件进行总结,需要保证视频内容的完整性,并且用中文进行输出,直接返回生成的文本", video_file=google_file, ) if video_text: self.set_understanding_result_for_task( task_id=task["id"], state=state, text=video_text ) # delete local file and google file if os.path.exists(video_local_path): os.remove(video_local_path) tqdm.write( "video transform to text success, delete local file" ) task_list.remove(task) self.google_ai_api.delete_video(file_name) tqdm.write( "delete video from google success: {}".format( file_name ) ) else: # roll back status and wait for next process update_task_queue_status( db_client=self.db, task_id=task["id"], process="understanding", ori_status=const.PROCESSING_STATUS, new_status=const.INIT_STATUS, ) except Exception as e: # roll back status update_task_queue_status( db_client=self.db, task_id=task["id"], process="understanding", ori_status=const.PROCESSING_STATUS, new_status=const.FAIL_STATUS, ) tqdm.write(str(e)) continue case "PROCESSING": update_task_queue_status( db_client=self.db, task_id=task["id"], process="understanding", ori_status=const.PROCESSING_STATUS, new_status=const.INIT_STATUS, ) tqdm.write("video is still processing") case "FAILED": update_sql = f""" update video_content_understanding set file_state = %s, understanding_status = %s, understanding_status_ts = %s where id = %s and understanding_status = %s; """ self.db.save( query=update_sql, params=( state, const.FAIL_STATUS, datetime.datetime.now(), task["id"], const.PROCESSING_STATUS, ), ) # delete local file and google file if os.path.exists(video_local_path): os.remove(video_local_path) self.google_ai_api.delete_video(file_name) task_list.remove(task) tqdm.write("video process failed, delete local file") time.sleep(const.SLEEP_SECONDS) except Exception as e: log( task="video_to_text", function="extract_video_to_text_task", message="extract video to text task failed", data={ "error": str(e), "traceback": traceback.format_exc(), "task_id": task["id"], }, ) update_task_queue_status( db_client=self.db, task_id=task["id"], process="understanding", ori_status=const.PROCESSING_STATUS, new_status=const.FAIL_STATUS, )