| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- LLM评估模块
- 用于评估搜索词质量和搜索结果相关度
- """
- import logging
- from typing import List, Dict, Any, Optional
- from concurrent.futures import ThreadPoolExecutor, as_completed
- from src.clients.openrouter_client import OpenRouterClient
- logger = logging.getLogger(__name__)
- class LLMEvaluator:
- """LLM评估器"""
- def __init__(self, openrouter_client: OpenRouterClient):
- """
- 初始化评估器
- Args:
- openrouter_client: OpenRouter客户端实例
- """
- self.client = openrouter_client
- def evaluate_search_word(
- self,
- original_feature: str,
- search_word: str
- ) -> Dict[str, Any]:
- """
- 评估搜索词质量(阶段4)
- Args:
- original_feature: 原始特征名称
- search_word: 组合搜索词
- Returns:
- 评估结果
- """
- prompt = f"""你是一个小红书内容分析专家。
- # 任务说明
- 从给定关键词中提取并组合适合在小红书搜索的query词(目标是找到【{original_feature}】相关内容,但query中不能直接出现"{original_feature}")
- ## 可选词汇
- {search_word}
- ## 要求
- 1. 只能使用可选词汇中的词,可以进行以下变化:
- - 直接使用原词或括号内的同义词
- - 多个词组合
- - 适当精简
- 2. 不能添加可选词汇以外的新词
- 3. 按推荐程度排序(越靠前越推荐)
- ## 输出格式(JSON)
- {{
- "score": 0.75,
- "reasoning": "评估理由"
- }}
- 注意:只返回JSON,不要其他内容。"""
- result = self.client.chat_json(prompt=prompt, max_retries=3)
- if result:
- return {
- "score": result.get("score", 0.0),
- "reasoning": result.get("reasoning", ""),
- "original_feature": original_feature
- }
- else:
- logger.error(f"评估搜索词失败: {search_word}")
- return {
- "score": 0.0,
- "reasoning": "LLM评估失败",
- "original_feature": original_feature
- }
- def evaluate_search_words_batch(
- self,
- original_feature: str,
- search_words: List[str],
- max_workers: int = 5
- ) -> List[Dict[str, Any]]:
- """
- 批量评估搜索词(并行)
- Args:
- original_feature: 原始特征
- search_words: 搜索词列表
- max_workers: 最大并发数
- Returns:
- 评估结果列表(已排序)
- """
- logger.info(f"开始批量评估 {len(search_words)} 个搜索词...")
- results = []
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # 提交任务
- future_to_word = {
- executor.submit(self.evaluate_search_word, original_feature, word): word
- for word in search_words
- }
- # 收集结果
- for idx, future in enumerate(as_completed(future_to_word), 1):
- word = future_to_word[future]
- try:
- result = future.result()
- result["search_word"] = word
- results.append(result)
- logger.info(f" [{idx}/{len(search_words)}] {word}: {result['score']:.3f}")
- except Exception as e:
- logger.error(f" 评估失败: {word}, 错误: {e}")
- results.append({
- "search_word": word,
- "score": 0.0,
- "reasoning": f"评估异常: {str(e)}",
- "original_feature": original_feature
- })
- # 按分数排序
- results.sort(key=lambda x: x["score"], reverse=True)
- # 添加排名
- for rank, result in enumerate(results, 1):
- result["rank"] = rank
- logger.info(f"批量评估完成,最高分: {results[0]['score']:.3f}")
- return results
- def evaluate_search_words_in_batches(
- self,
- original_feature: str,
- search_words: List[str],
- batch_size: int = 50,
- base_word: str = ""
- ) -> List[Dict[str, Any]]:
- """
- 分批评估搜索词(每批N个,减少API调用)
- Args:
- original_feature: 原始特征
- search_words: 搜索词列表
- batch_size: 每批处理的搜索词数量,默认10
- base_word: 中心词(如果提供,要求所有组合必须包含此词)
- Returns:
- 评估结果列表(已排序)
- """
- logger.info(f"开始分批评估 {len(search_words)} 个搜索词(每批 {batch_size} 个)...")
- all_results = []
- total_batches = (len(search_words) + batch_size - 1) // batch_size
- # 分批处理
- for batch_idx in range(total_batches):
- start_idx = batch_idx * batch_size
- end_idx = min(start_idx + batch_size, len(search_words))
- batch_words = search_words[start_idx:end_idx]
- logger.info(f" 处理第 {batch_idx + 1}/{total_batches} 批({len(batch_words)} 个搜索词)")
- # 从搜索词中提取所有独特的词作为可选词汇
- available_words_set = set()
- for word in batch_words:
- # 分割搜索词,提取单个词
- parts = word.split()
- available_words_set.update(parts)
- # 转换为列表并排序(保证稳定性)
- available_words = sorted(list(available_words_set))
- # 构建可选词汇字符串(逗号分隔)
- available_words_str = "、".join(available_words)
- # 构建 base_word 约束
- base_word_constraint = ""
- if base_word:
- base_word_constraint = f"""
- ## 中心词约束(重要)
- - 所有组合词都基于中心词: **{base_word}**
- - **禁止去掉中心词**,你只负责评分和排序
- - source_word 必须包含 "{base_word}"
- """
- prompt = f"""
- # 任务说明
- 模拟你是一个内容创作者,评估并排序这些基于中心词的搜索组合。
- {base_word_constraint}
- ## 可选词汇
- {available_words_str}
- ## 要求
- 1. 只能使用可选词汇中的词,可以进行以下变化:
- - 直接使用原词或括号内的同义词
- - 多个词组合
- - 适当精简
- 2. **source_word 必须包含中心词 "{base_word}"**(如果提供了中心词)
- 3. 不能添加可选词汇以外的新词
- 4. 按推荐程度排序(越靠前越推荐),取top5
- ## 输出格式(JSON):
- [
- {{
- "rank": 1,
- "search_word": "组合的搜索词",
- "source_word": "组合来源词,空格分割,组合来源词都是从available_words_str中选取的",
- "score": 0.85,
- "reasoning": "推荐理由"
- }},
- {{
- "index": 2,
- "search_word": "组合的搜索词",
- "source_word": "组合来源词,空格分割,组合来源词都是从available_words_str中选取的",
- "score": 0.80,
- "reasoning": "推荐理由"
- }}
- ]
- - 只返回JSON数组,不要其他内容"""
- # 调用LLM
- result = self.client.chat_json(prompt=prompt, max_retries=3)
- if result and isinstance(result, list):
- # 处理结果 - 新格式直接包含search_word
- for idx, item in enumerate(result):
- search_word = item.get("search_word", "")
- if search_word: # 确保有搜索词
- all_results.append({
- "search_word": search_word,
- "source_word": item.get("source_word", ""),
- "score": item.get("score", 0.0),
- "reasoning": item.get("reasoning", ""),
- "original_feature": original_feature
- })
- logger.info(f" [{start_idx + idx + 1}/{len(search_words)}] "
- f"{search_word}: {item.get('score', 0.0):.3f}")
- else:
- logger.error(f" 第 {batch_idx + 1} 批评估失败,跳过")
- # 为失败的批次添加默认结果(使用原搜索词)
- for word in batch_words:
- all_results.append({
- "search_word": word,
- "score": 0.0,
- "reasoning": "批量评估失败",
- "original_feature": original_feature
- })
- # 按分数排序
- all_results.sort(key=lambda x: x["score"], reverse=True)
- # 添加排名
- for rank, result in enumerate(all_results, 1):
- result["rank"] = rank
- logger.info(f"分批评估完成,最高分: {all_results[0]['score']:.3f} (总API调用: {total_batches} 次)")
- return all_results
- def generate_queries_from_candidates(
- self,
- original_feature: str,
- base_word: str,
- candidate_words: List[str],
- max_queries: int = 10
- ) -> List[Dict[str, Any]]:
- """
- 基于中心词和候选词列表,让LLM生成搜索query
- Args:
- original_feature: 原始特征名称
- base_word: 中心词
- candidate_words: 候选词列表
- max_queries: 最大query数量
- Returns:
- query数组(与旧格式兼容)
- """
- logger.info(f"LLM生成query(中心词: {base_word}, 候选词: {len(candidate_words)}个)")
- candidate_words_str = "、".join(candidate_words)
- prompt = f"""# 角色
- 你是一个专业的搜索query生成专家。你的任务是根据输入信息,生成最优的搜索query组合。
- # 核心规则(必须严格遵守)
- - 目标动机严格隔离,仅用于最终匹配度评估,Query生成过程中不得使用目标动机原文
- - query构成:仅由"中心词(如果有)+待选词的完整、未拆分形式"直接组成,严禁对原始词汇进行任何形式的增、删、改、拆分或重组,包括但不限于将一个词拆分成多个部分进行组合,或将多个词的部分内容进行拼接。
- - 单个query结构:2-4个词,考虑词的前后顺序
- # 输入
- 中心词:{base_word}
- 待选词:{candidate_words_str}
- 注:带权重的词用括号标注权重值,无权重或权重为0则平权
- # query生成流程
- ## 第一步:待选词预处理
- **去重**
- - 去除完全重复的词,优先保留权重高的的词
- ## 第二步:待选词关联性分析
- **如果有中心词:**
- 分析每个待选词与中心词的语义关联强度,判断哪些词与中心词组合能形成有意义的搜索语义
- **如果无中心词:**
- 分析待选词之间的语义关联强度,判断哪些词组合能形成完整的搜索语义场
- **关联性分级:**
- - **强关联(0.7-1.0)**:两词在语义上紧密配合,常在同一场景共现,组合后形成完整概念
- - **中关联(0.3-0.69)**:两词有明确关联但不强制共现,组合后有一定语义增益
- - **弱关联(0.0-0.29)**:两词无明显语义关联,组合无意义
- ## 第三步:互补性分析
- 对关联度较高的词进行互补性判断:
- **互补性分级:**
- - **强互补**:两词描述不同维度,组合后语义更完整(如:主体+场景、形式+内容)
- - **弱互补**:两词有差异但语义部分重叠
- - **语义重叠**:两词描述同一维度,组合无新增价值
- **语义重叠的判定标准:**
- - **重叠度>70%**:确实重复,应避免
- - **重叠度40-70%**:有差异,允许共存
- - **重叠度<40%**:互补,优先保留
- **常见互补维度组合:**
- - 主体+场景
- - 形式+内容
- - 内容+应用方式
- - 载体+场景+情绪
- ## 第四步:优先级排序
- **综合排序考量:**
- - 与中心词(或其他待选词)的关联强度
- - 原始权重高低
- - 互补性强弱
- - 角度独特性(是否覆盖不同语义维度)
- **排序原则:**
- 强关联+高权重+强互补 > 强关联+无权重+强互补 > 中关联+高权重+独特角度 > 中关联+强互补
- ## 第五步:生成query
- **整体query生成规则(确保从不同优先级和角度生成query):每种形式可生成1-2个query
- - 强关联+强互补(核心query,最精准),
- - 强关联+弱互补或中关联+强互补(扩展query,覆盖相关内容)
- - 中关联+弱互补但角度独特(覆盖query,探索边缘相关内容)
- - 创新组合或探索性query(低关联但可能发现意外相关内容)
- **组合策略:**
- **如果有中心词:**
- 1. 中心词 + 强关联且强互补的待选词(1-2个词)
- 2. 中心词 + 强关联但弱互补的待选词(1-2个词)
- 3. 中心词 + 中关联但角度独特的待选词(1-2个词)
- 4. 仅用待选词组合(当纯待选词组合语义更完整时)
- **如果无中心词:**
- 1. 2-3个强关联且强互补的待选词组合
- 2. 1个核心词 + 1-2个中关联但强互补或角度独特的词
- 3. 探索性组合:关联度中等但可能产生新视角的词组合
- **组合规则:**
- - 同一语义维度可保留2个有明显差异的词组合
- - 优先选择互补性强的词组合
- - 构成单个query的词数控制在2-3个
- - 考虑词的前后顺序(词定语在前,核心名词在后;场景词在前,实体词在后)
- - **query数量控制在3-8个**,在保证质量前提下尽可能生成更多不同角度的query
- - 即使query在语义上有轻微重叠(重叠度40-70%),只要切入角度不同也应保留
- **多样性要求:**
- - 从不同语义维度生成query(形式、场景、内容、情感、应用等)
- - 确保各层次query都有代表,覆盖从核心到边缘的搜索空间
- - 允许部分query探索性地组合中关联词,以发现潜在相关内容
- **组合理由:**
- 说明为什么选择这些词组合,词与词之间如何协同工作,形成什么样的搜索语义场,属于哪个生成层次
- ## 第六步:query与目标动机匹配度评估
- **重要说明:** 只有在query生成完成后,才将query与目标动机进行匹配度评估
- **匹配分含义:**
- 匹配分 = 此query语意扩展能找到目标动机所需内容的概率(0-1之间)
- **评分标准:**
- - **0.8-1.0分**:query在语意上与目标强关联,能精准召回目标动机所需内容,覆盖核心要素
- - **0.4-0.79分**:query语意部分覆盖目标特征,能召回相关内容但可能不够精准,部分覆盖目标
- - **0.39分以下**:query召回内容可能偏离目标动机
- **评分维度:**
- - query的语义场是否覆盖目标动机的核心要素
- - query能否精准定位到目标所需的内容类型
- - query在搜索引擎中的可召回性
- **组合推理要求:**
- 用流畅的段落说明:
- - query形成了什么样的搜索语义场
- - 这个语义场如何与目标动机产生关联
- - 为什么这个query能/不能召回目标所需内容
- - 使用因果关联词(因为/由于/所以/因此)串联逻辑
- - 避免"该query"、"这个"等模糊指代
- # 输出格式
- 最终按照以下json格式输出
- {{
- "queries": [
- {{
- "query": "query内容",
- "组合理由": "query词组合理由的详细说明,深度解释该query与中心词的逻辑关联。选择了哪些词,为什么这些词最相关(说明权重、语义覆盖、关联强度、互补性等原因),这些词如何协同工作,形成什么样的搜索语义场,词与词之间有什么语义延展关系,这个query预期能召回什么类型的内容",
- "与目标匹配分": 0.85,
- "匹配分理由": "目标特征的核心诉求是什么,基于这个诉求,该query为什么能找到目标,query的语义场如何与目标动机产生关联,为什么能/不能召回目标所需内容",
- "source_word": "产生这个query的来源词,待选词和中心词组合,多个组合空格分隔"
- }}
- ]
- }}
- **关键点:**
- 1. query生成阶段:只考虑词与词之间的语义关联和互补性
- 2. 匹配评估阶段:才将生成的query与目标动机进行匹配度分析
- 3. 目标动机不参与query生成,仅用于最终评估
- 4. 通过分层生成确保query数量充足且覆盖不同优先级
- **source_word规则**(重要):
- 1. 格式:空格分隔的词汇
- 2. 来源:**必须且只能**从"中心词 + 待选词"中提取
- 3. 提取规则:该query实际使用到的所有原始词汇
- 4. 禁止:同义替换、添加新词
- 5. 必须包含:中心词(如果query中使用了中心词)
- """
- # 调用 LLM
- llm_results = self.client.chat_json(prompt=prompt, max_retries=3)
- # 适配新的输出格式 {"queries": [...]}
- if not llm_results or not isinstance(llm_results, dict):
- logger.error("LLM返回格式错误:期待dict格式")
- return []
- queries_list = llm_results.get("queries", [])
- if not isinstance(queries_list, list):
- logger.error("LLM返回格式错误:queries字段不是列表")
- return []
- logger.info(f"LLM生成了 {len(queries_list)} 个query")
- # 解析并验证
- formatted_results = []
- for rank, item in enumerate(queries_list[:max_queries], 1):
- # 处理 LLM 输出的字段名:
- # - "query" → search_word
- # - "source_word " (注意尾随空格) → source_word
- # - "组合理由" → reasoning
- # - "与目标匹配分" → score
- query_text = item.get("query", "")
- source_word_raw = item.get("source_word ", item.get("source_word", "")) # 优先尝试带空格的键
- validated_source_word = self._validate_and_fix_source_word(
- llm_source_word=source_word_raw,
- query=query_text,
- base_word=base_word,
- candidate_words=candidate_words
- )
- formatted_results.append({
- "search_word": query_text,
- "source_word": validated_source_word,
- "score": item.get("与目标匹配分", 0.0), # 使用 LLM 提供的分数
- "reasoning": item.get("组合理由", ""),
- "rank": rank,
- "original_feature": original_feature
- })
- return formatted_results
- def _validate_and_fix_source_word(
- self,
- llm_source_word: str,
- query: str,
- base_word: str,
- candidate_words: List[str]
- ) -> str:
- """
- 验证并修正 LLM 输出的 source_word
- 确保只包含"中心词 + 候选词"中的词
- Args:
- llm_source_word: LLM 输出的 source_word
- query: 生成的 search_word
- base_word: 中心词
- candidate_words: 候选词列表
- Returns:
- 验证后的 source_word
- """
- words = llm_source_word.split()
- valid_words = []
- # 验证每个词是否在允许列表中
- for word in words:
- if word == base_word or word in candidate_words:
- valid_words.append(word)
- # 确保中心词存在(如果query中包含)
- if base_word in query and base_word not in valid_words:
- valid_words.insert(0, base_word)
- # 去重
- seen = set()
- deduplicated = []
- for word in valid_words:
- if word not in seen:
- seen.add(word)
- deduplicated.append(word)
- return ' '.join(deduplicated)
- def evaluate_single_note(
- self,
- original_feature: str,
- search_word: str,
- note: Dict[str, Any],
- note_index: int = 0
- ) -> Dict[str, Any]:
- """
- 评估单个帖子(阶段6,多模态)
- Args:
- original_feature: 原始特征
- search_word: 搜索词
- note: 单个帖子
- note_index: 帖子索引
- Returns:
- 单个帖子的评估结果
- """
- card = note.get("note_card", {})
- title = card.get("display_title", "")
- desc = card.get("desc", "")[:500] # 限制长度
- images = card.get("image_list", [])[:10] # 最多10张图
- prompt = f"""你是一个小红书内容分析专家。
- 任务:评估这个帖子是否包含目标特征"{original_feature}"的元素
- 原始特征:"{original_feature}"
- 搜索词:"{search_word}"
- 帖子内容:
- 标题: {title}
- 正文: {desc}
- 请分析帖子的文字和图片内容,返回JSON格式:
- {{
- "relevance": 0.85, // 0.0-1.0,相关度
- "matched_elements": ["元素1", "元素2"], // 匹配的元素列表
- "reasoning": "简短的匹配理由"
- }}
- 只返回JSON,不要其他内容。"""
- result = self.client.chat_json(
- prompt=prompt,
- images=images if images else None,
- max_retries=3
- )
- if result:
- return {
- "note_index": note_index,
- "relevance": result.get("relevance", 0.0),
- "matched_elements": result.get("matched_elements", []),
- "reasoning": result.get("reasoning", "")
- }
- else:
- logger.error(f" 评估帖子 {note_index} 失败: {search_word}")
- return {
- "note_index": note_index,
- "relevance": 0.0,
- "matched_elements": [],
- "reasoning": "评估失败"
- }
- def evaluate_search_results_parallel(
- self,
- original_feature: str,
- search_word: str,
- notes: List[Dict[str, Any]],
- max_notes: int = 20,
- max_workers: int = 20
- ) -> Dict[str, Any]:
- """
- 并行评估搜索结果(每个帖子独立评估)
- Args:
- original_feature: 原始特征
- search_word: 搜索词
- notes: 帖子列表
- max_notes: 最多评估几条帖子
- max_workers: 最大并发数
- Returns:
- 评估结果汇总
- """
- if not notes:
- return {
- "overall_relevance": 0.0,
- "extracted_elements": [],
- "evaluated_notes": []
- }
- notes_to_eval = notes[:max_notes]
- evaluated_notes = []
- logger.info(f" 并行评估 {len(notes_to_eval)} 个帖子({max_workers}并发)")
- # 20并发评估每个帖子
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- futures = []
- for idx, note in enumerate(notes_to_eval):
- future = executor.submit(
- self.evaluate_single_note,
- original_feature,
- search_word,
- note,
- idx
- )
- futures.append(future)
- # 收集结果
- for future in as_completed(futures):
- try:
- result = future.result()
- evaluated_notes.append(result)
- except Exception as e:
- logger.error(f" 评估帖子失败: {e}")
- # 按note_index排序
- evaluated_notes.sort(key=lambda x: x['note_index'])
- # 汇总:计算整体相关度和提取元素
- if evaluated_notes:
- overall_relevance = sum(n['relevance'] for n in evaluated_notes) / len(evaluated_notes)
- # 提取所有元素并统计频次
- element_counts = {}
- for note in evaluated_notes:
- for elem in note['matched_elements']:
- element_counts[elem] = element_counts.get(elem, 0) + 1
- # 按频次排序,取前5个
- extracted_elements = sorted(
- element_counts.keys(),
- key=lambda x: element_counts[x],
- reverse=True
- )[:5]
- else:
- overall_relevance = 0.0
- extracted_elements = []
- return {
- "overall_relevance": overall_relevance,
- "extracted_elements": extracted_elements,
- "evaluated_notes": evaluated_notes
- }
- def evaluate_search_results(
- self,
- original_feature: str,
- search_word: str,
- notes: List[Dict[str, Any]],
- max_notes: int = 5,
- max_images_per_note: int = 10
- ) -> Dict[str, Any]:
- """
- 评估搜索结果(阶段6,多模态)
- Args:
- original_feature: 原始特征
- search_word: 搜索词
- notes: 帖子列表
- max_notes: 最多评估几条帖子
- max_images_per_note: 每条帖子最多取几张图片
- Returns:
- 评估结果
- """
- if not notes:
- return {
- "overall_relevance": 0.0,
- "extracted_elements": [],
- "recommended_extension": None,
- "evaluated_notes": []
- }
- # 限制评估数量
- notes_to_eval = notes[:max_notes]
- # 准备文本信息
- notes_info = []
- all_images = []
- for idx, note in enumerate(notes_to_eval):
- card = note.get("note_card", {})
- title = card.get("display_title", "")
- desc = card.get("desc", "")[:300] # 限制长度
- notes_info.append({
- "index": idx,
- "title": title,
- "desc": desc
- })
- # 收集图片
- images = card.get("image_list", [])[:max_images_per_note]
- all_images.extend(images)
- # 构建提示词
- notes_text = "\n\n".join([
- f"帖子 {n['index']}:\n标题: {n['title']}\n正文: {n['desc']}"
- for n in notes_info
- ])
- prompt = f"""你是一个小红书内容分析专家。
- 任务:评估搜索结果是否包含目标特征的元素
- 原始特征:"{original_feature}"
- 搜索词:"{search_word}"
- 帖子数量:{len(notes_to_eval)} 条
- 帖子内容:
- {notes_text}
- 请综合分析帖子的文字和图片内容,判断:
- 1. 这些搜索结果中是否包含与"{original_feature}"相似的元素
- 2. 提取最相关的元素关键词(2-4个字的词组)
- 3. 推荐最适合用于扩展搜索的关键词
- 返回JSON格式:
- {{
- "overall_relevance": 0.72, // 0.0-1.0,整体相关度
- "extracted_elements": ["关键词1", "关键词2", "关键词3"], // 提取的相似元素,按相关度排序
- "recommended_extension": "关键词1", // 最优的扩展关键词
- "evaluated_notes": [
- {{
- "note_index": 0, // 帖子索引
- "relevance": 0.85, // 该帖子的相关度
- "matched_elements": ["元素1", "元素2"], // 该帖子匹配的元素
- "reasoning": "简短的匹配理由"
- }}
- ]
- }}
- 注意:
- - extracted_elements 应该是帖子中实际包含的、与原始特征相似的元素
- - 优先提取在图片或文字中明显出现的元素
- - 只返回JSON,不要其他内容"""
- # 调用LLM(带图片)
- result = self.client.chat_json(
- prompt=prompt,
- images=all_images if all_images else None,
- max_retries=3
- )
- if result:
- # 确保返回完整格式
- return {
- "overall_relevance": result.get("overall_relevance", 0.0),
- "extracted_elements": result.get("extracted_elements", []),
- "recommended_extension": result.get("recommended_extension"),
- "evaluated_notes": result.get("evaluated_notes", [])
- }
- else:
- logger.error(f"评估搜索结果失败: {search_word}")
- return {
- "overall_relevance": 0.0,
- "extracted_elements": [],
- "recommended_extension": None,
- "evaluated_notes": []
- }
- def batch_evaluate_search_results(
- self,
- features_with_results: List[Dict[str, Any]],
- max_workers: int = 3
- ) -> List[Dict[str, Any]]:
- """
- 批量评估搜索结果(并行,但并发数较低以避免超时)
- Args:
- features_with_results: 带搜索结果的特征列表
- max_workers: 最大并发数
- Returns:
- 带评估结果的特征列表
- """
- logger.info(f"开始批量评估 {len(features_with_results)} 个搜索结果...")
- results = []
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- # 提交任务
- future_to_feature = {}
- for feature in features_with_results:
- if not feature.get("search_result"):
- # 无搜索结果,跳过
- feature["result_evaluation"] = None
- results.append(feature)
- continue
- original_feature = self._get_original_feature(feature)
- search_word = feature.get("search_word", "")
- notes = feature["search_result"].get("data", {}).get("data", [])
- future = executor.submit(
- self.evaluate_search_results,
- original_feature,
- search_word,
- notes
- )
- future_to_feature[future] = feature
- # 收集结果
- for idx, future in enumerate(as_completed(future_to_feature), 1):
- feature = future_to_feature[future]
- try:
- evaluation = future.result()
- feature["result_evaluation"] = evaluation
- results.append(feature)
- logger.info(f" [{idx}/{len(future_to_feature)}] {feature.get('search_word')}: "
- f"relevance={evaluation['overall_relevance']:.3f}")
- except Exception as e:
- logger.error(f" 评估失败: {feature.get('search_word')}, 错误: {e}")
- feature["result_evaluation"] = None
- results.append(feature)
- logger.info(f"批量评估完成")
- return results
- def _get_original_feature(self, feature_node: Dict[str, Any]) -> str:
- """
- 从特征节点中获取原始特征名称
- Args:
- feature_node: 特征节点
- Returns:
- 原始特征名称
- """
- # 尝试从llm_evaluation中获取
- if "llm_evaluation" in feature_node:
- return feature_node["llm_evaluation"].get("original_feature", "")
- # 尝试从其他字段获取
- return feature_node.get("原始特征名称", feature_node.get("特征名称", ""))
- # ========== Stage 6: 两层评估方法 ==========
- def evaluate_query_relevance_batch(
- self,
- search_query: str,
- notes: List[Dict[str, Any]],
- max_notes: int = 20
- ) -> Dict[str, Any]:
- """
- 第一层评估:批量判断搜索结果与 Query 的相关性
- 一次 LLM 调用评估多个笔记的 Query 相关性
- Args:
- search_query: 搜索Query
- notes: 笔记列表
- max_notes: 最多评估几条笔记
- Returns:
- {
- "note_0": {"与query相关性": "相关", "说明": "..."},
- "note_1": {"与query相关性": "不相关", "说明": "..."},
- ...
- }
- """
- if not notes:
- return {}
- notes_to_eval = notes[:max_notes]
- # 构建笔记列表文本
- notes_text = ""
- for idx, note in enumerate(notes_to_eval):
- note_card = note.get('note_card', {})
- title = note_card.get('display_title', '')
- content = note_card.get('desc', '')[:800] # 限制长度
- images = note_card.get('image_list', [])
- notes_text += f"note_{idx}:\n"
- notes_text += f"- 标题: {title}\n"
- notes_text += f"- 正文: {content}\n"
- notes_text += f"- 图像: {len(images)}张图片\n\n"
- # 构建完整的第一层评估 Prompt(用户提供,不简化)
- prompt = f"""# 任务说明
- 判断搜索结果是否与搜索Query相关,过滤掉完全无关的结果。
- # 输入信息
- 搜索Query: {search_query}
- 搜索结果列表:
- {notes_text}
- # 判断标准
- ✅ 相关(保留)
- 搜索结果的标题、正文或图像内容中包含Query相关的信息:
- Query的核心关键词在结果中出现
- 或 结果讨论的主题与Query直接相关
- 或 结果是Query概念的上位/下位/平行概念
- ❌ 不相关(过滤)
- 搜索结果与Query完全无关:
- Query的关键词完全未出现
- 结果主题与Query无任何关联
- 仅因搜索引擎误匹配而出现
- ## 判断示例
- Query "墨镜搭配" → 结果"太阳镜选购指南" ✅ 保留(墨镜=太阳镜)
- Query "墨镜搭配" → 结果"眼镜搭配技巧" ✅ 保留(眼镜是墨镜的上位概念)
- Query "墨镜搭配" → 结果"帽子搭配技巧" ❌ 过滤(完全无关)
- Query "复古滤镜" → 结果"滤镜调色教程" ✅ 保留(包含滤镜)
- Query "复古滤镜" → 结果"相机推荐" ❌ 过滤(主题不相关)
- # 输出格式
- {{
- "note_0": {{
- "与query相关性": "相关 / 不相关",
- "说明": ""
- }},
- "note_1": {{
- "与query相关性": "相关 / 不相关",
- "说明": ""
- }}
- }}
- # 特殊情况处理
- - 如果OCR提取的图像文字不完整或正文内容缺失,应在说明中注明,并根据实际可获取的信息进行判断
- - 当无法明确判断时,倾向于保留(标记为"相关")
- 只返回JSON,不要其他内容。"""
- # 调用 LLM(批量评估)
- result = self.client.chat_json(
- prompt=prompt,
- max_retries=3
- )
- if result:
- return result
- else:
- logger.error(f" 第一层批量评估失败: Query={search_query}")
- # 返回默认结果(全部标记为"相关"以保守处理)
- default_result = {}
- for idx in range(len(notes_to_eval)):
- default_result[f"note_{idx}"] = {
- "与query相关性": "相关",
- "说明": "LLM评估失败,默认保留"
- }
- return default_result
- def evaluate_feature_matching_single(
- self,
- target_feature: str,
- note_title: str,
- note_content: str,
- note_images: List[str],
- note_index: int
- ) -> Dict[str, Any]:
- """
- 第二层评估:评估单个笔记与目标特征的匹配度
- Args:
- target_feature: 目标特征
- note_title: 笔记标题
- note_content: 笔记正文
- note_images: 图片URL列表
- note_index: 笔记索引
- Returns:
- {
- "综合得分": 0.9, # 0-1分
- "匹配类型": "完全匹配",
- "评分说明": "...",
- "关键匹配点": [...]
- }
- """
- # 构建完整的第二层评估 Prompt(用户提供,不简化)
- prompt = f"""# 任务说明
- 你需要判断搜索到的案例与目标特征的相关性。
- # 输入信息
- 目标特征:{target_feature}
- 搜索结果:
- - 标题: {note_title}
- - 正文: {note_content[:800]}
- - 图像: {len(note_images)}张图片(请仔细分析图片内容,包括OCR提取图片中的文字)
- # 判断流程
- ## 目标特征匹配度评分
- 综合考虑语义相似度(概念匹配、层级关系)和场景关联度(应用场景、使用语境)进行评分:
- - 0.8-1分:完全匹配
- 语义层面:找到与目标特征完全相同或高度一致的内容,核心概念完全一致
- 场景层面:完全适用于同一场景、受众、平台和语境
- 示例:
- 目标"复古滤镜" + 小红书穿搭场景 vs 结果"小红书复古滤镜调色教程"
- 目标"墨镜" + 时尚搭配场景 vs 结果"时尚墨镜搭配指南"
- - 0.6-0.7分:相似匹配
- 语义层面:
- 结果是目标的上位概念(更宽泛)或下位概念(更具体)
- 或属于同一概念的不同表现形式,或属于平行概念(同级不同类)
- 场景层面:场景相近但有差异,需要筛选或调整后可用
- 示例:
- 目标"墨镜" + 时尚搭配 vs 结果"眼镜搭配技巧"(上位概念,需筛选)
- 目标"怀旧滤镜" + 人像拍摄 vs 结果"胶片感调色"(不同表现形式)
- 目标"日常穿搭" + 街拍 vs 结果"通勤穿搭拍照"(场景相近)
- - 0.5-0.6分:弱相似
- 语义层面:属于同一大类但具体方向或侧重点明显不同,仅提供了相关概念
- 场景层面:场景有明显差异,迁移需要较大改造
- 示例:
- 目标"户外运动穿搭" vs 结果"健身房穿搭指南"
- 目标"小红书图文笔记" vs 结果"抖音短视频脚本"
- - 0.4分及以下:无匹配
- 语义层面:仅表面词汇重叠,实质关联弱,或概念距离过远
- 场景层面:应用场景基本不同或完全不同
- 示例:
- 目标"墨镜" vs 结果"配饰大全"(概念过于宽泛)
- 目标"美食摄影构图" vs 结果"美食博主日常vlog"
- ## 概念层级关系说明
- 在评分时,需要注意概念层级关系的影响:
- 完全匹配(同一概念 + 同场景)→ 0.8-1分
- 目标"墨镜" vs 结果"墨镜搭配",且都在时尚搭配场景
- 上位/下位概念(层级差一层)→ 通常0.6-0.7分
- 目标"墨镜" vs 结果"眼镜搭配"(结果更宽泛,需筛选)
- 目标"眼镜" vs 结果"墨镜选购"(结果更具体,部分适用)
- 平行概念(同级不同类)→ 通常0.6-0.7分
- 目标"墨镜" vs 结果"近视眼镜"(都是眼镜类,但功能场景不同)
- 远距离概念(层级差两层及以上)→ 0.5分及以下
- 目标"墨镜" vs 结果"配饰"(概念过于宽泛,指导性弱)
- # 匹配结论判断
- 根据综合得分判定匹配类型:
- 0.8-1.0分:✅ 完全匹配
- 判断:找到了目标特征的直接灵感来源
- 建议:直接采纳为该特征的灵感溯源结果
- 0.6-0.79分:⚠️ 相似匹配
- 判断:找到了相关的灵感参考,但存在一定差异
- 建议:作为候选结果保留,可与其他结果综合判断或继续搜索更精确的匹配
- 0.59分及以下:❌ 无匹配
- 判断:该结果与目标特征关联度不足
- 建议:排除该结果,需要调整搜索策略继续寻找
- # 输出格式
- {{
- "综合得分": 0.7,
- "匹配类型": "相似匹配",
- "评分说明": "结果'眼镜搭配技巧'是目标'墨镜'的上位概念,内容涵盖多种眼镜类型。场景都是时尚搭配,但需要从结果中筛选出墨镜相关的内容。概念关系:上位概念(宽泛一层)",
- "关键匹配点": [
- "眼镜与脸型的搭配原则(部分适用于墨镜)",
- "配饰的风格选择方法"
- ]
- }}
- # 特殊情况处理
- 复合特征评估:如果目标特征是复合型(如"复古滤镜+第一人称视角"),需要分别评估每个子特征的匹配度,然后取平均值作为最终得分
- 信息不完整:如果OCR提取的图像文字不完整或正文内容缺失,应在说明中注明,并根据实际可获取的信息进行评分
- 上位概念的实用性:当结果是目标的上位概念时,评分应考虑:内容中目标相关部分的占比;是否提供了可直接应用于目标的知识;场景的一致性程度;如果结果虽是上位概念但完全不涉及目标内容,应降至5-6分或更低
- 只返回JSON,不要其他内容。"""
- # 调用 LLM(传递图片进行多模态分析)
- result = self.client.chat_json(
- prompt=prompt,
- images=note_images if note_images else None,
- max_retries=3
- )
- if result:
- return result
- else:
- logger.error(f" 第二层评估失败: note {note_index}, target={target_feature}")
- return {
- "综合得分": 0.0,
- "匹配类型": "评估失败",
- "评分说明": "LLM评估失败",
- "关键匹配点": []
- }
- def evaluate_note_with_filter(
- self,
- search_query: str,
- target_feature: str,
- note_title: str,
- note_content: str,
- note_images: List[str],
- note_index: int = 0
- ) -> Dict[str, Any]:
- """
- 两层评估单个笔记(完整Prompt版本)
- 第一层:Query相关性过滤
- 第二层:目标特征匹配度评分
- Args:
- search_query: 搜索Query,如 "外观装扮 发布萌宠内容"
- target_feature: 目标特征,如 "佩戴"
- note_title: 笔记标题
- note_content: 笔记正文
- note_images: 图片URL列表(会传递给LLM进行视觉分析和OCR)
- note_index: 笔记索引
- Returns:
- 评估结果字典
- """
- # 构建完整的评估Prompt(用户提供的完整版本,一字不改)
- prompt = f"""# 任务说明
- 你需要判断搜索到的案例信息与目标特征的相关性。判断分为两层:第一层过滤与搜索Query无关的结果,第二层评估与目标特征的匹配度。
- # 输入信息
- 搜索Query:{search_query}
- 目标特征:{target_feature}
- 搜索结果:
- - 标题: {note_title}
- - 正文: {note_content[:800]}
- - 图像: {len(note_images)}张图片(请仔细分析图片内容,包括OCR提取图片中的文字)
- # 判断流程
- 第一层:Query相关性过滤
- 判断标准:搜索结果是否与搜索Query相关
- 过滤规则:
- ✅ 保留:搜索结果的标题、正文或图像内容中包含Query相关的信息
- Query的核心关键词在结果中出现
- 或结果讨论的主题与Query直接相关
- 或结果是Query概念的上位/下位/平行概念
- ❌ 过滤:搜索结果与Query完全无关
- Query的关键词完全未出现
- 结果主题与Query无任何关联
- 仅因搜索引擎误匹配而出现
- 示例:
- Query "墨镜搭配" → 结果"太阳镜选购指南" ✅ 保留(墨镜=太阳镜)
- Query "墨镜搭配" → 结果"眼镜搭配技巧" ✅ 保留(眼镜是上位概念)
- Query "墨镜搭配" → 结果"帽子搭配技巧" ❌ 过滤(完全无关)
- Query "复古滤镜" → 结果"滤镜调色教程" ✅ 保留(包含滤镜)
- Query "复古滤镜" → 结果"相机推荐" ❌ 过滤(主题不相关)
- 输出:
- 如果判定为 ❌ 过滤,直接输出:
- json{{
- "Query相关性": "不相关",
- "综合得分": 0,
- "匹配类型": "过滤",
- "说明": "搜索结果与Query '{search_query}' 完全无关,建议过滤"
- }}
- 如果判定为 ✅ 保留,进入第二层评分
- 第二层:目标特征匹配度评分
- 综合考虑语义相似度(概念匹配、层级关系、实操价值)和场景关联度(应用场景、使用语境)进行评分:
- 8-10分:完全匹配
- 语义层面:找到与目标特征完全相同或高度一致的内容,核心概念完全一致
- 场景层面:完全适用于同一场景、受众、平台和语境
- 实操价值:提供了具体可执行的方法、步骤或技巧
- 示例:
- 目标"复古滤镜" + 小红书穿搭场景 vs 结果"小红书复古滤镜调色教程"
- 目标"墨镜" + 时尚搭配场景 vs 结果"时尚墨镜搭配指南"
- 6-7分:相似匹配
- 语义层面:
- 结果是目标的上位概念(更宽泛)或下位概念(更具体)
- 或属于同一概念的不同表现形式
- 或属于平行概念(同级不同类)
- 场景层面:场景相近但有差异,需要筛选或调整后可用
- 实操价值:有一定参考价值但需要转化应用
- 示例:
- 目标"墨镜" + 时尚搭配 vs 结果"眼镜搭配技巧"(上位概念,需筛选)
- 目标"怀旧滤镜" + 人像拍摄 vs 结果"胶片感调色"(不同表现形式)
- 目标"日常穿搭" + 街拍 vs 结果"通勤穿搭拍照"(场景相近)
- 5-6分:弱相似
- 语义层面:属于同一大类但具体方向或侧重点明显不同
- 场景层面:场景有明显差异,迁移需要较大改造
- 实操价值:提供了概念启发但需要较大转化
- 示例:
- 目标"户外运动穿搭" vs 结果"健身房穿搭指南"
- 目标"小红书图文笔记" vs 结果"抖音短视频脚本"
- 4分及以下:无匹配
- 语义层面:仅表面词汇重叠,实质关联弱,或概念距离过远
- 场景层面:应用场景基本不同或完全不同
- 实操价值:实操指导价值有限或无价值
- 示例:
- 目标"墨镜" vs 结果"配饰大全"(概念过于宽泛)
- 目标"美食摄影构图" vs 结果"美食博主日常vlog"
- 概念层级关系说明
- 在评分时,需要注意概念层级关系的影响:
- 完全匹配(同一概念 + 同场景)→ 8-10分
- 目标"墨镜" vs 结果"墨镜搭配",且都在时尚搭配场景
- 上位/下位概念(层级差一层)→ 通常6-7分
- 目标"墨镜" vs 结果"眼镜搭配"(结果更宽泛,需筛选)
- 目标"眼镜" vs 结果"墨镜选购"(结果更具体,部分适用)
- 平行概念(同级不同类)→ 通常6-7分
- 目标"墨镜" vs 结果"近视眼镜"(都是眼镜类,但功能场景不同)
- 远距离概念(层级差两层及以上)→ 4分及以下
- 目标"墨镜" vs 结果"配饰"(概念过于宽泛,指导性弱)
- 匹配结论判断
- 根据综合得分判定匹配类型:
- 8.0-10.0分:✅ 完全匹配
- 判断:找到了目标特征的直接灵感来源
- 置信度:高
- 建议:直接采纳为该特征的灵感溯源结果
- 5.0-7.9分:⚠️ 相似匹配
- 判断:找到了相关的灵感参考,但存在一定差异
- 置信度:中
- 建议:作为候选结果保留,可与其他结果综合判断或继续搜索更精确的匹配
- 1.0-4.9分:❌ 无匹配
- 判断:该结果与目标特征关联度不足
- 置信度:低
- 建议:排除该结果,需要调整搜索策略继续寻找
- # 输出格式
- 通过Query相关性过滤的结果:
- json{{
- "Query相关性": "相关",
- "综合得分": 7.0,
- "匹配类型": "相似匹配",
- "置信度": "中",
- "评分说明": "结果'眼镜搭配技巧'是目标'墨镜'的上位概念,内容涵盖多种眼镜类型。场景都是时尚搭配,但需要从结果中筛选出墨镜相关的内容。概念关系:上位概念(宽泛一层)",
- "关键匹配点": [
- "眼镜与脸型的搭配原则(部分适用于墨镜)",
- "配饰的风格选择方法"
- ]
- }}
- 未通过Query相关性过滤的结果:
- json{{
- "Query相关性": "不相关",
- "综合得分": 0,
- "匹配类型": "过滤",
- "说明": "搜索结果'帽子搭配技巧'与Query'墨镜搭配'完全无关,建议过滤"
- }}
- # 特殊情况处理
- 复合特征评估:如果目标特征是复合型(如"复古滤镜+第一人称视角"),需要分别评估每个子特征的匹配度,然后取算术平均值作为最终得分
- 信息不完整:如果OCR提取的图像文字不完整或正文内容缺失,应在说明中注明,并根据实际可获取的信息进行评分
- 上位概念的实用性:当结果是目标的上位概念时,评分应考虑:
- 内容中目标相关部分的占比
- 是否提供了可直接应用于目标的知识
- 场景的一致性程度
- 如果结果虽是上位概念但完全不涉及目标内容,应降至5-6分或更低
- Query与目标特征的关系:
- 如果Query就是目标特征本身,第一层和第二层判断可以合并考虑
- 如果Query是为了探索目标特征而构建的更宽泛查询,第一层更宽松,第二层更严格
- 只返回JSON,不要其他内容。"""
- # 调用LLM(传递图片URL进行多模态分析)
- result = self.client.chat_json(
- prompt=prompt,
- images=note_images if note_images else None, # ✅ 传递图片
- max_retries=3
- )
- if result:
- # 添加笔记索引
- result['note_index'] = note_index
- return result
- else:
- logger.error(f" 评估笔记 {note_index} 失败: Query={search_query}")
- return {
- "note_index": note_index,
- "Query相关性": "评估失败",
- "综合得分": 0,
- "匹配类型": "评估失败",
- "说明": "LLM评估失败"
- }
- def batch_evaluate_notes_with_filter(
- self,
- search_query: str,
- target_feature: str,
- notes: List[Dict[str, Any]],
- max_notes: int = 20,
- max_workers: int = 10
- ) -> Dict[str, Any]:
- """
- 两层评估多个笔记(拆分为两次LLM调用)
- 第一层:批量评估Query相关性(1次LLM调用)
- 第二层:对"相关"的笔记评估特征匹配度(M次LLM调用)
- Args:
- search_query: 搜索Query
- target_feature: 目标特征
- notes: 笔记列表
- max_notes: 最多评估几条笔记
- max_workers: 最大并发数
- Returns:
- 评估结果汇总(包含统计信息)
- """
- if not notes:
- return {
- "total_notes": 0,
- "evaluated_notes": 0,
- "filtered_count": 0,
- "statistics": {},
- "notes_evaluation": []
- }
- notes_to_eval = notes[:max_notes]
- logger.info(f" 两层评估 {len(notes_to_eval)} 个笔记")
- # ========== 第一层:批量评估Query相关性 ==========
- logger.info(f" [第一层] 批量评估Query相关性(1次LLM调用)")
- query_relevance_result = self.evaluate_query_relevance_batch(
- search_query=search_query,
- notes=notes_to_eval,
- max_notes=max_notes
- )
- # 解析第一层结果,找出"相关"的笔记
- relevant_notes_info = []
- for idx, note in enumerate(notes_to_eval):
- note_key = f"note_{idx}"
- relevance_info = query_relevance_result.get(note_key, {})
- relevance = relevance_info.get("与query相关性", "相关") # 默认为"相关"
- if relevance == "相关":
- # 保留笔记信息用于第二层评估
- note_card = note.get('note_card', {})
- relevant_notes_info.append({
- "note_index": idx,
- "note_card": note_card,
- "title": note_card.get('display_title', ''),
- "content": note_card.get('desc', ''),
- "images": note_card.get('image_list', []),
- "第一层评估": relevance_info
- })
- logger.info(f" [第一层] 过滤结果: {len(relevant_notes_info)}/{len(notes_to_eval)} 条相关")
- # ========== 第二层:对相关笔记评估特征匹配度 ==========
- evaluated_notes = []
- if relevant_notes_info:
- logger.info(f" [第二层] 并行评估特征匹配度({len(relevant_notes_info)}次LLM调用,{max_workers}并发)")
- with ThreadPoolExecutor(max_workers=max_workers) as executor:
- futures = []
- for note_info in relevant_notes_info:
- future = executor.submit(
- self.evaluate_feature_matching_single,
- target_feature,
- note_info["title"],
- note_info["content"],
- note_info["images"],
- note_info["note_index"]
- )
- futures.append((future, note_info))
- # 收集结果并合并
- for future, note_info in futures:
- try:
- second_layer_result = future.result()
- # 合并两层评估结果
- note_index = note_info["note_index"]
- merged_result = {
- "note_index": note_index,
- "note_id": notes_to_eval[note_index].get('id'), # 添加note_id用于关联解构数据
- "Query相关性": "相关",
- "综合得分": second_layer_result.get("综合得分", 0.0), # 0-1分制
- "匹配类型": second_layer_result.get("匹配类型", ""),
- "评分说明": second_layer_result.get("评分说明", ""),
- "关键匹配点": second_layer_result.get("关键匹配点", []),
- "第一层评估": note_info["第一层评估"],
- "第二层评估": second_layer_result
- }
- evaluated_notes.append(merged_result)
- except Exception as e:
- logger.error(f" [第二层] 评估笔记 {note_info['note_index']} 失败: {e}")
- # 失败的笔记也加入结果
- note_index = note_info["note_index"]
- evaluated_notes.append({
- "note_index": note_index,
- "note_id": notes_to_eval[note_index].get('id'), # 添加note_id用于关联解构数据
- "Query相关性": "相关",
- "综合得分": 0.0,
- "匹配类型": "评估失败",
- "评分说明": f"第二层评估失败: {str(e)}",
- "关键匹配点": [],
- "第一层评估": note_info["第一层评估"],
- "第二层评估": {}
- })
- # 添加第一层就被过滤的笔记(Query不相关)
- for idx, note in enumerate(notes_to_eval):
- note_key = f"note_{idx}"
- relevance_info = query_relevance_result.get(note_key, {})
- relevance = relevance_info.get("与query相关性", "相关")
- if relevance == "不相关":
- evaluated_notes.append({
- "note_index": idx,
- "note_id": notes_to_eval[idx].get('id'), # 添加note_id用于关联解构数据
- "Query相关性": "不相关",
- "综合得分": 0.0,
- "匹配类型": "过滤",
- "说明": relevance_info.get("说明", ""),
- "第一层评估": relevance_info
- })
- # 按note_index排序
- evaluated_notes.sort(key=lambda x: x.get('note_index', 0))
- # 统计信息
- total_notes = len(notes)
- evaluated_count = len(evaluated_notes)
- filtered_count = sum(1 for n in evaluated_notes if n.get('Query相关性') == '不相关')
- # 匹配度分布统计(使用0-1分制的阈值)
- match_distribution = {
- '完全匹配(0.8-1.0)': 0,
- '相似匹配(0.6-0.79)': 0,
- '弱相似(0.5-0.59)': 0,
- '无匹配(≤0.4)': 0
- }
- for note_eval in evaluated_notes:
- if note_eval.get('Query相关性') == '不相关':
- continue # 过滤的不计入分布
- score = note_eval.get('综合得分', 0)
- if score >= 0.8:
- match_distribution['完全匹配(0.8-1.0)'] += 1
- elif score >= 0.6:
- match_distribution['相似匹配(0.6-0.79)'] += 1
- elif score >= 0.5:
- match_distribution['弱相似(0.5-0.59)'] += 1
- else:
- match_distribution['无匹配(≤0.4)'] += 1
- logger.info(f" 评估完成: 过滤{filtered_count}条, 匹配分布: {match_distribution}")
- return {
- "total_notes": total_notes,
- "evaluated_notes": evaluated_count,
- "filtered_count": filtered_count,
- "statistics": match_distribution,
- "notes_evaluation": evaluated_notes
- }
- def test_evaluator():
- """测试评估器"""
- import os
- # 初始化客户端
- client = OpenRouterClient()
- evaluator = LLMEvaluator(client)
- # 测试搜索词评估
- print("\n=== 测试搜索词评估 ===")
- result = evaluator.evaluate_search_word(
- original_feature="拟人",
- search_word="宠物猫 猫咪"
- )
- print(f"评分: {result['score']:.3f}")
- print(f"理由: {result['reasoning']}")
- # 测试批量评估
- print("\n=== 测试批量评估 ===")
- results = evaluator.evaluate_search_words_batch(
- original_feature="拟人",
- search_words=["宠物猫 猫咪", "宠物猫 猫孩子", "宠物猫 猫"],
- max_workers=2
- )
- for r in results:
- print(f"{r['search_word']}: {r['score']:.3f} (rank={r['rank']})")
- if __name__ == "__main__":
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(levelname)s - %(message)s'
- )
- test_evaluator()
|