| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- """
- 分析特定原始特征的搜索执行情况
- """
- import json
- import sys
- from typing import Dict, Any, List
- def analyze_feature_searches(stage4_path: str, stage6_path: str, feature_name: str):
- """分析指定原始特征的搜索情况"""
- # 加载数据
- with open(stage4_path, 'r', encoding='utf-8') as f:
- stage4_data = json.load(f)
- with open(stage6_path, 'r', encoding='utf-8') as f:
- stage6_data = json.load(f)
- # 找到指定特征
- stage4_feature = None
- stage6_feature = None
- for item in stage4_data:
- if item['原始特征名称'] == feature_name:
- stage4_feature = item
- break
- for item in stage6_data:
- if item['原始特征名称'] == feature_name:
- stage6_feature = item
- break
- if not stage4_feature:
- print(f"❌ 在 Stage4 中未找到特征: {feature_name}")
- return
- if not stage6_feature:
- print(f"❌ 在 Stage6 中未找到特征: {feature_name}")
- return
- print("=" * 80)
- print(f"原始特征: {feature_name}")
- print("=" * 80)
- # 收集 Stage4 的所有搜索词
- stage4_search_words = []
- for association in stage4_feature.get('找到的关联', []):
- assoc_name = association.get('分类名称', '')
- for feature in association.get('特征列表', []):
- search_word = feature.get('search_word')
- llm_eval = feature.get('llm_evaluation', {})
- if search_word:
- stage4_search_words.append({
- 'search_word': search_word,
- 'association': assoc_name,
- 'feature_name': feature.get('特征名称', ''),
- 'llm_score': llm_eval.get('score'),
- 'llm_rank': llm_eval.get('rank'),
- 'reasoning': llm_eval.get('reasoning', '')
- })
- # 收集 Stage6 的所有搜索词及其执行状态
- stage6_search_words = []
- for association in stage6_feature.get('找到的关联', []):
- assoc_name = association.get('分类名称', '')
- for feature in association.get('特征列表', []):
- search_word = feature.get('search_word')
- search_result = feature.get('search_result')
- search_metadata = feature.get('search_metadata', {})
- llm_eval = feature.get('llm_evaluation', {})
- if search_word:
- stage6_search_words.append({
- 'search_word': search_word,
- 'association': assoc_name,
- 'feature_name': feature.get('特征名称', ''),
- 'llm_score': llm_eval.get('score'),
- 'llm_rank': llm_eval.get('rank'),
- 'has_result': search_result is not None,
- 'status': search_metadata.get('status', 'not_searched'),
- 'note_count': search_metadata.get('note_count', 0)
- })
- # 统计
- total_stage4 = len(stage4_search_words)
- total_stage6 = len(stage6_search_words)
- searched = sum(1 for w in stage6_search_words if w['has_result'])
- not_searched = total_stage6 - searched
- print(f"\n📊 统计信息:")
- print(f" Stage4 生成的搜索词数: {total_stage4}")
- print(f" Stage6 保留的搜索词数: {total_stage6}")
- print(f" 已执行搜索: {searched} 个")
- print(f" 未执行搜索: {not_searched} 个")
- print(f" 搜索执行率: {searched/total_stage6*100:.1f}%")
- # 按 rank 排序并展示
- stage6_sorted = sorted(stage6_search_words, key=lambda x: x['llm_rank'] if x['llm_rank'] else 999)
- print(f"\n📋 详细搜索词列表 (按 LLM Rank 排序):")
- print(f"{'Rank':<6} {'评分':<6} {'搜索状态':<12} {'帖子数':<8} 搜索词")
- print("-" * 80)
- for idx, word in enumerate(stage6_sorted, 1):
- rank = word['llm_rank'] if word['llm_rank'] else 'N/A'
- score = f"{word['llm_score']:.2f}" if word['llm_score'] else 'N/A'
- status = '✅ 已搜索' if word['has_result'] else '⏸️ 未搜索'
- note_count = word['note_count'] if word['has_result'] else '-'
- print(f"{rank:<6} {score:<6} {status:<12} {note_count:<8} {word['search_word']}")
- # 展示已搜索的搜索词详情
- searched_words = [w for w in stage6_sorted if w['has_result']]
- if searched_words:
- print(f"\n✅ 已执行搜索的 {len(searched_words)} 个搜索词:")
- for idx, word in enumerate(searched_words, 1):
- print(f"\n 【{idx}】 {word['search_word']}")
- print(f" 关联: {word['association']}")
- print(f" 特征: {word['feature_name']}")
- print(f" 评分: {word['llm_score']:.2f}, 排名: #{word['llm_rank']}")
- print(f" 结果: {word['note_count']} 个帖子")
- # 展示未搜索的搜索词
- not_searched_words = [w for w in stage6_sorted if not w['has_result']]
- if not_searched_words:
- print(f"\n⏸️ 未执行搜索的 {len(not_searched_words)} 个搜索词:")
- for idx, word in enumerate(not_searched_words, 1):
- print(f"\n 【{idx}】 {word['search_word']}")
- print(f" 关联: {word['association']}")
- print(f" 特征: {word['feature_name']}")
- print(f" 评分: {word['llm_score']:.2f}, 排名: #{word['llm_rank']}")
- # 分析为什么只搜索了部分
- print(f"\n🔍 搜索策略分析:")
- if searched == 10:
- print(f" 系统使用了 Top-10 策略")
- top_10_ranks = sorted([w['llm_rank'] for w in searched_words if w['llm_rank']])
- print(f" 实际搜索的 Rank 范围: {top_10_ranks}")
- # 检查是否严格按 rank 取的 top-10
- expected_top_10_ranks = sorted([w['llm_rank'] for w in stage6_sorted[:10] if w['llm_rank']])
- if top_10_ranks == expected_top_10_ranks:
- print(f" ✓ 严格按照 LLM Rank 取了 Top-10")
- else:
- print(f" ⚠️ 不是严格的 Top-10 (期望: {expected_top_10_ranks})")
- elif searched > 0:
- print(f" 系统执行了 {searched} 个搜索")
- else:
- print(f" 该特征的搜索尚未执行")
- print("\n" + "=" * 80)
- if __name__ == '__main__':
- stage4_path = 'output_v2/stage4_with_llm_scores.json'
- stage6_path = 'output_v2/stage6_with_evaluations.json'
- feature_name = '墨镜'
- if len(sys.argv) > 1:
- feature_name = sys.argv[1]
- if len(sys.argv) > 2:
- stage4_path = sys.argv[2]
- if len(sys.argv) > 3:
- stage6_path = sys.argv[3]
- analyze_feature_searches(stage4_path, stage6_path, feature_name)
|