123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- import numpy as np
- def differenceFunction(x, N, tau_max):
- """
- Compute difference function of data x. This corresponds to equation (6) in [1]
- This solution is implemented directly with Numpy fft.
- :param x: audio data
- :param N: length of data
- :param tau_max: integration window size
- :return: difference function
- :rtype: list
- """
- x = np.array(x, np.float64)
- w = x.size
- tau_max = min(tau_max, w)
- x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
- size = w + tau_max
- p2 = (size // 32).bit_length()
- nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
- size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
- fc = np.fft.rfft(x, size_pad)
- conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
- return x_cumsum[w:w - tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv
- def cumulativeMeanNormalizedDifferenceFunction(df, N):
- """
- Compute cumulative mean normalized difference function (CMND).
- This corresponds to equation (8) in [1]
- :param df: Difference function
- :param N: length of data
- :return: cumulative mean normalized difference function
- :rtype: list
- """
- cmndf = df[1:] * range(1, N) / np.cumsum(df[1:]).astype(float)
- return np.insert(cmndf, 0, 1)
- def getPitch(cmdf, tau_min, tau_max, harmo_th=0.1):
- """
- Return fundamental period of a frame based on CMND function.
- :param cmdf: Cumulative Mean Normalized Difference function
- :param tau_min: minimum period for speech
- :param tau_max: maximum period for speech
- :param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency
- :return: fundamental period if there is values under threshold, 0 otherwise
- :rtype: float
- """
- tau = tau_min
- while tau < tau_max:
- if cmdf[tau] < harmo_th:
- while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
- tau += 1
- return tau
- tau += 1
- return 0
- def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500,
- harmo_thresh=0.1):
- """
- Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
- :param sig: Audio signal (list of float)
- :param sr: sampling rate (int)
- :param w_len: size of the analysis window (samples)
- :param w_step: size of the lag between two consecutives windows (samples)
- :param f0_min: Minimum fundamental frequency that can be detected (hertz)
- :param f0_max: Maximum fundamental frequency that can be detected (hertz)
- :param harmo_tresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this treshold.
- :returns:
- * pitches: list of fundamental frequencies,
- * harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value)
- * argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
- * times: list of time of each estimation
- :rtype: tuple
- """
- tau_min = int(sr / f0_max)
- tau_max = int(sr / f0_min)
- timeScale = range(0, len(sig) - w_len, w_step)
- times = [t/float(sr) for t in timeScale]
- frames = [sig[t:t + w_len] for t in timeScale]
- pitches = [0.0] * len(timeScale)
- harmonic_rates = [0.0] * len(timeScale)
- argmins = [0.0] * len(timeScale)
- for i, frame in enumerate(frames):
-
- df = differenceFunction(frame, w_len, tau_max)
- cmdf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max)
- p = getPitch(cmdf, tau_min, tau_max, harmo_thresh)
-
- if np.argmin(cmdf) > tau_min:
- argmins[i] = float(sr / np.argmin(cmdf))
- if p != 0:
- pitches[i] = float(sr / p)
- harmonic_rates[i] = cmdf[p]
- else:
- harmonic_rates[i] = min(cmdf)
- return pitches, harmonic_rates, argmins, times
|