1234567891011121314151617181920212223242526272829303132333435363738394041 |
- import numpy as np
- from scipy.io.wavfile import read
- import torch
- def get_mask_from_lengths(lengths):
- max_len = torch.max(lengths).item()
- # ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len))
- ids = torch.arange(0, max_len, out=torch.LongTensor(max_len))
- mask = (ids < lengths.unsqueeze(1)).bool()
- return mask
- def load_wav_to_torch(full_path):
- sampling_rate, data = read(full_path)
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
- def load_filepaths_and_text(filename, split="|"):
- with open(filename, encoding='utf-8') as f:
- filepaths_and_text = [line.strip().split(split) for line in f]
- return filepaths_and_text
- def files_to_list(filename):
- """
- Takes a text file of filenames and makes a list of filenames
- """
- with open(filename, encoding='utf-8') as f:
- files = f.readlines()
- files = [f.rstrip() for f in files]
- return files
- def to_gpu(x):
- x = x.contiguous()
- if torch.cuda.is_available():
- x = x.cuda(non_blocking=True)
- return torch.autograd.Variable(x)
|