train.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. import os
  2. import time
  3. import argparse
  4. import math
  5. from numpy import finfo
  6. import torch
  7. from distributed import apply_gradient_allreduce
  8. import torch.distributed as dist
  9. from torch.utils.data.distributed import DistributedSampler
  10. from torch.utils.data import DataLoader
  11. from model import load_model
  12. from data_utils import TextMelLoader, TextMelCollate
  13. from loss_function import Tacotron2Loss
  14. from logger import Tacotron2Logger
  15. from hparams import create_hparams
  16. import os
  17. os.environ['KMP_DUPLICATE_LIB_OK']='True'
  18. def reduce_tensor(tensor, n_gpus):
  19. rt = tensor.clone()
  20. dist.all_reduce(rt, op=dist.ReduceOp.SUM)
  21. rt /= n_gpus
  22. return rt
  23. def init_distributed(hparams, n_gpus, rank, group_name):
  24. assert torch.cuda.is_available(), "Distributed mode requires CUDA."
  25. print("Initializing Distributed")
  26. # Set cuda device so everything is done on the right GPU.
  27. torch.cuda.set_device(rank % torch.cuda.device_count())
  28. # Initialize distributed communication
  29. dist.init_process_group(
  30. backend=hparams.dist_backend, init_method=hparams.dist_url,
  31. world_size=n_gpus, rank=rank, group_name=group_name)
  32. print("Done initializing distributed")
  33. def prepare_dataloaders(hparams):
  34. # Get data, data loaders and collate function ready
  35. trainset = TextMelLoader(hparams.training_files, hparams)
  36. valset = TextMelLoader(hparams.validation_files, hparams,
  37. speaker_ids=trainset.speaker_ids)
  38. collate_fn = TextMelCollate(hparams.n_frames_per_step)
  39. if hparams.distributed_run:
  40. train_sampler = DistributedSampler(trainset)
  41. shuffle = False
  42. else:
  43. train_sampler = None
  44. shuffle = True
  45. train_loader = DataLoader(trainset, num_workers=0, shuffle=shuffle,
  46. sampler=train_sampler,
  47. batch_size=hparams.batch_size, pin_memory=False,
  48. drop_last=True, collate_fn=collate_fn)
  49. return train_loader, valset, collate_fn, train_sampler
  50. def prepare_directories_and_logger(output_directory, log_directory, rank):
  51. if rank == 0:
  52. if not os.path.isdir(output_directory):
  53. os.makedirs(output_directory)
  54. os.chmod(output_directory, 0o775)
  55. logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
  56. else:
  57. logger = None
  58. return logger
  59. def warm_start_model(checkpoint_path, model, ignore_layers):
  60. assert os.path.isfile(checkpoint_path)
  61. print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
  62. checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
  63. model_dict = checkpoint_dict['state_dict']
  64. if len(ignore_layers) > 0:
  65. model_dict = {k: v for k, v in model_dict.items()
  66. if k not in ignore_layers}
  67. dummy_dict = model.state_dict()
  68. dummy_dict.update(model_dict)
  69. model_dict = dummy_dict
  70. model.load_state_dict(model_dict)
  71. return model
  72. def load_checkpoint(checkpoint_path, model, optimizer):
  73. assert os.path.isfile(checkpoint_path)
  74. print("Loading checkpoint '{}'".format(checkpoint_path))
  75. checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
  76. model.load_state_dict(checkpoint_dict['state_dict'])
  77. optimizer.load_state_dict(checkpoint_dict['optimizer'])
  78. learning_rate = checkpoint_dict['learning_rate']
  79. iteration = checkpoint_dict['iteration']
  80. print("Loaded checkpoint '{}' from iteration {}" .format(
  81. checkpoint_path, iteration))
  82. return model, optimizer, learning_rate, iteration
  83. def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
  84. print("Saving model and optimizer state at iteration {} to {}".format(
  85. iteration, filepath))
  86. torch.save({'iteration': iteration,
  87. 'state_dict': model.state_dict(),
  88. 'optimizer': optimizer.state_dict(),
  89. 'learning_rate': learning_rate}, filepath)
  90. def validate(model, criterion, valset, iteration, batch_size, n_gpus,
  91. collate_fn, logger, distributed_run, rank):
  92. """Handles all the validation scoring and printing"""
  93. model.eval()
  94. with torch.no_grad():
  95. val_sampler = DistributedSampler(valset) if distributed_run else None
  96. val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
  97. shuffle=False, batch_size=batch_size,
  98. pin_memory=False, collate_fn=collate_fn)
  99. val_loss = 0.0
  100. for i, batch in enumerate(val_loader):
  101. x, y = model.parse_batch(batch)
  102. y_pred = model(x)
  103. loss = criterion(y_pred, y)
  104. if distributed_run:
  105. reduced_val_loss = reduce_tensor(loss.data, n_gpus).item()
  106. else:
  107. reduced_val_loss = loss.item()
  108. val_loss += reduced_val_loss
  109. val_loss = val_loss / (i + 1)
  110. model.train()
  111. if rank == 0:
  112. print("Validation loss {}: {:9f} ".format(iteration, reduced_val_loss))
  113. logger.log_validation(val_loss, model, y, y_pred, iteration)
  114. def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
  115. rank, group_name, hparams):
  116. """Training and validation logging results to tensorboard and stdout
  117. Params
  118. ------
  119. output_directory (string): directory to save checkpoints
  120. log_directory (string) directory to save tensorboard logs
  121. checkpoint_path(string): checkpoint path
  122. n_gpus (int): number of gpus
  123. rank (int): rank of current gpu
  124. hparams (object): comma separated list of "name=value" pairs.
  125. """
  126. if hparams.distributed_run:
  127. init_distributed(hparams, n_gpus, rank, group_name)
  128. torch.manual_seed(hparams.seed)
  129. torch.cuda.manual_seed(hparams.seed)
  130. model = load_model(hparams)
  131. learning_rate = hparams.learning_rate
  132. optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
  133. weight_decay=hparams.weight_decay)
  134. if hparams.fp16_run:
  135. from apex import amp
  136. model, optimizer = amp.initialize(
  137. model, optimizer, opt_level='O2')
  138. if hparams.distributed_run:
  139. model = apply_gradient_allreduce(model)
  140. criterion = Tacotron2Loss()
  141. logger = prepare_directories_and_logger(
  142. output_directory, log_directory, rank)
  143. train_loader, valset, collate_fn, train_sampler = prepare_dataloaders(hparams)
  144. # Load checkpoint if one exists
  145. iteration = 0
  146. epoch_offset = 0
  147. if checkpoint_path is not None:
  148. if warm_start:
  149. model = warm_start_model(
  150. checkpoint_path, model, hparams.ignore_layers)
  151. else:
  152. model, optimizer, _learning_rate, iteration = load_checkpoint(
  153. checkpoint_path, model, optimizer)
  154. if hparams.use_saved_learning_rate:
  155. learning_rate = _learning_rate
  156. iteration += 1 # next iteration is iteration + 1
  157. epoch_offset = max(0, int(iteration / len(train_loader)))
  158. model.train()
  159. is_overflow = False
  160. # ================ MAIN TRAINNIG LOOP! ===================
  161. for epoch in range(epoch_offset, hparams.epochs):
  162. print("Epoch: {}".format(epoch))
  163. if train_sampler is not None:
  164. train_sampler.set_epoch(epoch)
  165. for i, batch in enumerate(train_loader):
  166. start = time.perf_counter()
  167. if iteration > 0 and iteration % hparams.learning_rate_anneal == 0:
  168. learning_rate = max(
  169. hparams.learning_rate_min, learning_rate * 0.5)
  170. for param_group in optimizer.param_groups:
  171. param_group['lr'] = learning_rate
  172. model.zero_grad()
  173. x, y = model.parse_batch(batch)
  174. y_pred = model(x)
  175. loss = criterion(y_pred, y)
  176. if hparams.distributed_run:
  177. reduced_loss = reduce_tensor(loss.data, n_gpus).item()
  178. else:
  179. reduced_loss = loss.item()
  180. if hparams.fp16_run:
  181. with amp.scale_loss(loss, optimizer) as scaled_loss:
  182. scaled_loss.backward()
  183. else:
  184. loss.backward()
  185. if hparams.fp16_run:
  186. grad_norm = torch.nn.utils.clip_grad_norm_(
  187. amp.master_params(optimizer), hparams.grad_clip_thresh)
  188. is_overflow = math.isnan(grad_norm)
  189. else:
  190. grad_norm = torch.nn.utils.clip_grad_norm_(
  191. model.parameters(), hparams.grad_clip_thresh)
  192. optimizer.step()
  193. if not is_overflow and rank == 0:
  194. duration = time.perf_counter() - start
  195. print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
  196. iteration, reduced_loss, grad_norm, duration))
  197. logger.log_training(
  198. reduced_loss, grad_norm, learning_rate, duration, iteration)
  199. if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0):
  200. validate(model, criterion, valset, iteration,
  201. hparams.batch_size, n_gpus, collate_fn, logger,
  202. hparams.distributed_run, rank)
  203. if rank == 0:
  204. checkpoint_path = os.path.join(
  205. output_directory, "checkpoint_{}".format(iteration))
  206. save_checkpoint(model, optimizer, learning_rate, iteration,
  207. checkpoint_path)
  208. iteration += 1
  209. if __name__ == '__main__':
  210. parser = argparse.ArgumentParser()
  211. parser.add_argument('-o', '--output_directory', type=str,default='outdir',
  212. help='directory to save checkpoints')
  213. parser.add_argument('-l', '--log_directory', type=str,default='logdir',
  214. help='directory to save tensorboard logs')
  215. parser.add_argument('-c', '--checkpoint_path', type=str,
  216. # default='models/mellotron_ljs.pt',
  217. required=False, help='checkpoint path')
  218. parser.add_argument('--warm_start', action='store_true',default=False,
  219. help='load model weights only, ignore specified layers')
  220. parser.add_argument('--n_gpus', type=int, default=1,
  221. required=False, help='number of gpus')
  222. parser.add_argument('--rank', type=int, default=0,
  223. required=False, help='rank of current gpu')
  224. parser.add_argument('--group_name', type=str, default='group_name',
  225. required=False, help='Distributed group name')
  226. parser.add_argument('--hparams', type=str,
  227. required=False, help='comma separated name=value pairs')
  228. args = parser.parse_args()
  229. hparams = create_hparams(args.hparams)
  230. torch.backends.cudnn.enabled = hparams.cudnn_enabled
  231. torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
  232. print("FP16 Run:", hparams.fp16_run)
  233. print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling)
  234. print("Distributed Run:", hparams.distributed_run)
  235. print("cuDNN Enabled:", hparams.cudnn_enabled)
  236. print("cuDNN Benchmark:", hparams.cudnn_benchmark)
  237. train(args.output_directory, args.log_directory, args.checkpoint_path,
  238. args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)