123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- """ from https://github.com/keithito/tacotron """
- import re
- import random
- from text import cleaners
- from text.symbols import symbols
- from pypinyin import pinyin, lazy_pinyin, Style
- import phkit
- # Mappings from symbol to numeric ID and vice versa:
- _symbol_to_id = {s: i for i, s in enumerate(symbols)}
- _id_to_symbol = {i: s for i, s in enumerate(symbols)}
- # Regular expression matching text enclosed in curly braces:
- _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
- _words_re = re.compile(r"([a-zA-ZÀ-ž]+['][a-zA-ZÀ-ž]{1,2}|[a-zA-ZÀ-ž]+)|([{][^}]+[}]|[^a-zA-ZÀ-ž{}]+)")
- _chinese_words_re = re.compile(r'[\u4e00-\u9fa5]+')
- def get_arpabet(word, dictionary):
- word_arpabet = dictionary.lookup(word)
- if word_arpabet is not None:
- return "{" + word_arpabet[0] + "}"
- else:
- return word
- def text_to_sequence(text, cleaner_names, dictionary=None, p_arpabet=1.0):
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
- The text can optionally have ARPAbet sequences enclosed in curly braces embedded
- in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
- Args:
- text: string to convert to a sequence
- cleaner_names: names of the cleaner functions to run the text through
- dictionary: arpab俄et class with arpabet dictionary
- Returns:
- List of integers corresponding to the symbols in the text
- '''
- sequence = []
- # Check for curly braces and treat their contents as ARPAbet:
- while len(text):
- m = _curly_re.match(text)
- if not m:
- clean_text = _clean_text(text, cleaner_names)
- if dictionary is not None:
- words = _words_re.findall(text)
- clean_text = [
- get_arpabet(word[0], dictionary)
- if ((word[0] != '') and random.random() < p_arpabet) else word[1]
- for word in words]
- for i in range(len(clean_text)):
- t = clean_text[i]
- if t.startswith("{"):
- sequence += _arpabet_to_sequence(t[1:-1])
- else:
- sequence += _symbols_to_sequence(t)
- #sequence += space
- else:
- sequence += _symbols_to_sequence(clean_text)
- break
- sequence += text_to_sequence(m.group(1), cleaner_names, dictionary, p_arpabet)
- sequence += _arpabet_to_sequence(m.group(2))
- text = m.group(3)
- return sequence
- def chinese_text_to_phoneme_sequence(text):
- '''
- convert chinese words to phoneme , phkit toolkit implement
- chinese word normalize and change pitch for continuous chinese word
- '''
- sequence = []
- while len(text):
- sequence = phkit.text2sequence(text)[:-3]
- break
- return sequence
- def sequence_to_text(sequence):
- '''Converts a sequence of IDs back to a string'''
- result = ''
- for symbol_id in sequence:
- if symbol_id in _id_to_symbol:
- s = _id_to_symbol[symbol_id]
- # Enclose ARPAbet back in curly braces:
- if len(s) > 1 and s[0] == '@':
- s = '{%s}' % s[1:]
- result += s
- return result.replace('}{', ' ')
- def _clean_text(text, cleaner_names):
- for name in cleaner_names:
- cleaner = getattr(cleaners, name)
- if not cleaner:
- raise Exception('Unknown cleaner: %s' % name)
- text = cleaner(text)
- return text
- def _symbols_to_sequence(symbols):
- return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
- def _arpabet_to_sequence(text):
- return _symbols_to_sequence(['@' + s for s in text.split()])
- def _should_keep_symbol(s):
- return s in _symbol_to_id and s is not '_' and s is not '~'
|