123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # adapted from https://github.com/KinglittleQ/GST-Tacotron/blob/master/GST.py
- # MIT License
- #
- # Copyright (c) 2018 MagicGirl Sakura
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- # DEALINGS IN THE SOFTWARE.
- import torch
- import torch.nn as nn
- import torch.nn.init as init
- import torch.nn.functional as F
- class ReferenceEncoder(nn.Module):
- '''
- inputs --- [N, Ty/r, n_mels*r] mels
- outputs --- [N, ref_enc_gru_size]
- '''
- def __init__(self, hp):
- super().__init__()
- K = len(hp.ref_enc_filters)
- filters = [1] + hp.ref_enc_filters
- convs = [nn.Conv2d(in_channels=filters[i],
- out_channels=filters[i + 1],
- kernel_size=(3, 3),
- stride=(2, 2),
- padding=(1, 1)) for i in range(K)]
- self.convs = nn.ModuleList(convs)
- self.bns = nn.ModuleList(
- [nn.BatchNorm2d(num_features=hp.ref_enc_filters[i])
- for i in range(K)])
- out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K)
- self.gru = nn.GRU(input_size=hp.ref_enc_filters[-1] * out_channels,
- hidden_size=hp.ref_enc_gru_size,
- batch_first=True)
- self.n_mel_channels = hp.n_mel_channels
- self.ref_enc_gru_size = hp.ref_enc_gru_size
- def forward(self, inputs, input_lengths=None):
- out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels)
- for conv, bn in zip(self.convs, self.bns):
- out = conv(out)
- out = bn(out)
- out = F.relu(out)
- out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
- N, T = out.size(0), out.size(1)
- out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
- if input_lengths is not None:
- input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs))
- input_lengths = input_lengths.cpu().numpy().astype(int)
- out = nn.utils.rnn.pack_padded_sequence(
- out, input_lengths, batch_first=True, enforce_sorted=False)
- self.gru.flatten_parameters()
- _, out = self.gru(out)
- return out.squeeze(0)
- def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
- for _ in range(n_convs):
- L = (L - kernel_size + 2 * pad) // stride + 1
- return L
- class STL(nn.Module):
- '''
- inputs --- [N, token_embedding_size//2]
- '''
- def __init__(self, hp):
- super().__init__()
- self.embed = nn.Parameter(torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads))
- d_q = hp.ref_enc_gru_size
- d_k = hp.token_embedding_size // hp.num_heads
- self.attention = MultiHeadAttention(
- query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size,
- num_heads=hp.num_heads)
- init.normal_(self.embed, mean=0, std=0.5)
- def forward(self, inputs):
- N = inputs.size(0)
- query = inputs.unsqueeze(1)
- keys = torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) # [N, token_num, token_embedding_size // num_heads]
- style_embed = self.attention(query, keys)
- return style_embed
- class MultiHeadAttention(nn.Module):
- '''
- input:
- query --- [N, T_q, query_dim]
- key --- [N, T_k, key_dim]
- output:
- out --- [N, T_q, num_units]
- '''
- def __init__(self, query_dim, key_dim, num_units, num_heads):
- super().__init__()
- self.num_units = num_units
- self.num_heads = num_heads
- self.key_dim = key_dim
- self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
- self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
- self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
- def forward(self, query, key):
- querys = self.W_query(query) # [N, T_q, num_units]
- keys = self.W_key(key) # [N, T_k, num_units]
- values = self.W_value(key)
- split_size = self.num_units // self.num_heads
- querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
- keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
- values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
- # score = softmax(QK^T / (d_k ** 0.5))
- scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
- scores = scores / (self.key_dim ** 0.5)
- scores = F.softmax(scores, dim=3)
- # out = score * V
- out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
- out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
- return out
- class GST(nn.Module):
- def __init__(self, hp):
- super().__init__()
- self.encoder = ReferenceEncoder(hp)
- self.stl = STL(hp)
- def forward(self, inputs, input_lengths=None):
- enc_out = self.encoder(inputs, input_lengths=input_lengths)
- style_embed = self.stl(enc_out)
- return style_embed
|