123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- from typing import List, Dict, Any, TypedDict
- from langgraph.graph import StateGraph, END
- from langchain_google_genai import ChatGoogleGenerativeAI
- from langchain.prompts import ChatPromptTemplate
- from langchain.schema import HumanMessage, SystemMessage
- import httpx
- import json
- from ..tools.prompts import STRUCTURED_TOOL_DEMAND_PROMPT
- from ..database.models import QueryTaskDAO, QueryTaskStatus, logger
- class AgentState(TypedDict):
- """Agent状态定义"""
- question: str
- task_id: int
- initial_queries: List[str]
- refined_queries: List[str]
- result_queries: List[Dict[str, str]]
- knowledgeType: str
- class QueryGenerationAgent:
- """查询词生成Agent"""
-
- def __init__(self, gemini_api_key: str, model_name: str = "gemini-1.5-pro"):
- """
- 初始化Agent
-
- Args:
- gemini_api_key: Gemini API密钥
- model_name: 使用的模型名称
- """
- self.llm = ChatGoogleGenerativeAI(
- google_api_key=gemini_api_key,
- model=model_name,
- temperature=0.7
- )
-
- self.task_dao = QueryTaskDAO()
-
- # 创建状态图
- self.graph = self._create_graph()
-
- def _create_graph(self) -> StateGraph:
- """创建LangGraph状态图"""
- workflow = StateGraph(AgentState)
-
- # 添加节点(仅保留 生成 与 保存)
- workflow.add_node("generate_initial_queries", self._generate_initial_queries)
- workflow.add_node("save_queries", self._save_queries)
-
- # 设置入口点
- workflow.set_entry_point("generate_initial_queries")
-
- # 添加边
- workflow.add_edge("generate_initial_queries", "save_queries")
- workflow.add_edge("save_queries", END)
-
- return workflow.compile()
-
- def _generate_initial_queries(self, state: AgentState) -> AgentState:
- """生成 refined_queries(从结构化JSON中聚合三类关键词)"""
- question = state["question"]
- # 使用新的结构化系统提示
- prompt = ChatPromptTemplate.from_messages([
- SystemMessage(content=STRUCTURED_TOOL_DEMAND_PROMPT),
- HumanMessage(content=question)
- ])
- try:
- response = self.llm.invoke(prompt.format_messages())
- text = (response.content or "").strip()
- # 解析严格的JSON数组;若失败,尝试从文本中提取
- try:
- data = json.loads(text)
- except Exception:
- data = self._extract_json_array_from_text(text)
- logger.info(f"需求分析结果: {data}")
- aggregated: List[str] = []
- for item in data:
- ek = (item or {}).get("expanded_keywords", {})
- g = ek.get("general_discovery_queries", []) or []
- t = ek.get("themed_function_queries", []) or []
- h = ek.get("how_to_use_queries", []) or []
- for q in [*g, *t, *h]:
- q_str = str(q).strip()
- if q_str:
- aggregated.append(q_str)
- # 去重,保持顺序
- seen = set()
- deduped: List[str] = []
- for q in aggregated:
- if q not in seen:
- seen.add(q)
- deduped.append(q)
- state["initial_queries"] = deduped
- state["refined_queries"] = deduped
- except Exception as e:
- logger.warning(f"结构化需求解析失败,降级为原始问题: {e}")
- state["initial_queries"] = [question]
- state["refined_queries"] = [question]
- return state
-
- # 删除 refine/validate/classify 节点
-
- def _save_queries(self, state: AgentState) -> AgentState:
- """保存查询词到外部接口节点"""
- refined_queries = state.get("refined_queries", [])
- question = state.get("question", "")
- knowledge_type = state.get("knowledgeType", "") or "内容知识"
-
- if not refined_queries:
- logger.warning("没有查询词需要保存")
- return state
-
- # 合并 knowledgeType 与每个查询词,形成提交数据
- result_items: List[Dict[str, str]] = [
- {"query": q, "knowledgeType": knowledge_type} for q in refined_queries
- ]
- state["result_queries"] = result_items
-
- try:
- url = "http://aigc-testapi.cybertogether.net/aigc/agent/knowledgeWorkflow/addQuery"
- headers = {"Content-Type": "application/json"}
- with httpx.Client() as client:
- data_content = result_items
- logger.info(f"查询词保存数据: {data_content}")
- resp1 = client.post(url, headers=headers, json=data_content, timeout=30)
- resp1.raise_for_status()
- logger.info(f"查询词保存结果: {resp1.text}")
- logger.info(f"查询词保存成功: question={question},query数量={len(result_items)}")
- except httpx.HTTPError as e:
- logger.error(f"保存查询词时发生HTTP错误: {str(e)}")
- except Exception as e:
- logger.error(f"保存查询词时发生错误: {str(e)}")
-
- return state
-
- def _infer_knowledge_type(self, query: str) -> str:
- """根据查询词简单推断知识类型(内容知识/工具知识)"""
- tool_keywords = [
- "安装", "配置", "使用", "教程", "API", "SDK", "命令", "指令", "版本",
- "错误", "异常", "调试", "部署", "集成", "调用", "参数", "示例", "代码",
- "CLI", "tool", "library", "framework"
- ]
- lower_q = query.lower()
- for kw in tool_keywords:
- if kw.lower() in lower_q:
- return "工具知识"
- return "内容知识"
- def _classify_with_llm(self, queries: List[str]) -> List[Dict[str, str]]:
- """调用LLM将查询词分类为 内容知识 / 工具知识。
- 返回形如 [{"query": q, "knowledgeType": "内容知识"|"工具知识"}, ...]
- 若解析失败,降级为将所有查询标记为 内容知识(不使用关键词启发)。
- """
- if not queries:
- return []
- instruction = (
- "你是一名分类助手。请将下面的查询词逐一分类为‘内容知识’或‘工具知识’。\n"
- "请只返回严格的JSON数组,每个元素为对象:{\"query\": 原始查询词, \"knowledgeType\": \"内容知识\" 或 \"工具知识\"}。\n"
- "不要输出任何解释或多余文本。"
- )
- payload = "\n".join(queries)
- prompt = ChatPromptTemplate.from_messages([
- SystemMessage(content=instruction),
- HumanMessage(content=f"查询词列表(每行一个):\n{payload}")
- ])
- try:
- response = self.llm.invoke(prompt.format_messages())
- text = (response.content or "").strip()
- logger.info(f"LLM分类结果: {text}")
- # 尝试解析为JSON数组;若失败,尝试从代码块或文本中提取
- try:
- data = json.loads(text)
- except Exception:
- data = self._extract_json_array_from_text(text)
- result: List[Dict[str, str]] = []
- for item in data:
- q = str(item.get("query", "")).strip()
- kt = str(item.get("knowledgeType", "")).strip()
- if q and kt in ("内容知识", "工具知识"):
- result.append({"query": q, "knowledgeType": kt})
- # 保证顺序与输入一致,且都包含
- if len(result) != len(queries):
- # 尝试基于输入进行对齐
- mapped = {it["query"]: it["knowledgeType"] for it in result}
- aligned: List[Dict[str, str]] = []
- for q in queries:
- kt = mapped.get(q, "内容知识")
- aligned.append({"query": q, "knowledgeType": kt})
- return aligned
- return result
- except Exception as e:
- # 降级:全部标注为内容知识(不做关键词匹配)
- logger.warning(f"LLM分类失败,使用降级策略: {e}")
- return [{"query": q, "knowledgeType": "内容知识"} for q in queries]
- def _extract_json_array_from_text(self, text: str) -> List[Dict[str, Any]]:
- """尽力从模型输出(可能包含```json代码块或多余文本)中提取JSON数组。"""
- s = (text or "").strip()
- # 去除三引号包裹的代码块
- if s.startswith("```"):
- # 去掉第一行的 ``` 或 ```json
- first_newline = s.find('\n')
- if first_newline != -1:
- s = s[first_newline + 1:]
- if s.endswith("```"):
- s = s[:-3]
- s = s.strip()
- # 在文本中查找首个JSON数组
- import re
- match = re.search(r"\[[\s\S]*\]", s)
- if not match:
- raise ValueError("未找到JSON数组片段")
- json_str = match.group(0)
- data = json.loads(json_str)
- if not isinstance(data, list):
- raise ValueError("提取内容不是JSON数组")
- return data
- async def generate_queries(self, question: str, task_id: int = 0, knowledge_type: str = "") -> List[str]:
- """
- 生成查询词的主入口
-
- Args:
- question: 用户问题
- task_id: 任务ID
- Returns:
- 生成的查询词列表
- """
- initial_state = {
- "question": question,
- "task_id": task_id,
- "initial_queries": [],
- "refined_queries": [],
- "result_queries": [],
- "knowledgeType": knowledge_type or "内容知识"
- }
-
- try:
- result = await self.graph.ainvoke(initial_state)
- return result["result_queries"]
- except Exception as e:
- # 更新任务状态为失败
- if task_id > 0:
- self.task_dao.update_task_status(task_id, QueryTaskStatus.FAILED)
- # 降级处理:返回原始问题
- return [question]
|