12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178 |
- /*****************************************************************************
- * rdo.c: rate-distortion optimization
- *****************************************************************************
- * Copyright (C) 2005-2018 x264 project
- *
- * Authors: Loren Merritt <lorenm@u.washington.edu>
- * Fiona Glaser <fiona@x264.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
- *
- * This program is also available under a commercial proprietary license.
- * For more information, contact us at licensing@x264.com.
- *****************************************************************************/
- /* duplicate all the writer functions, just calculating bit cost
- * instead of writing the bitstream.
- * TODO: use these for fast 1st pass too. */
- #define RDO_SKIP_BS 1
- /* Transition and size tables for abs<9 MVD and residual coding */
- /* Consist of i_prefix-2 1s, one zero, and a bypass sign bit */
- #define x264_cabac_transition_unary x264_template(cabac_transition_unary)
- uint8_t x264_cabac_transition_unary[15][128];
- #define x264_cabac_size_unary x264_template(cabac_size_unary)
- uint16_t x264_cabac_size_unary[15][128];
- /* Transition and size tables for abs>9 MVD */
- /* Consist of 5 1s and a bypass sign bit */
- static uint8_t cabac_transition_5ones[128];
- static uint16_t cabac_size_5ones[128];
- /* CAVLC: produces exactly the same bit count as a normal encode */
- /* this probably still leaves some unnecessary computations */
- #define bs_write1(s,v) ((s)->i_bits_encoded += 1)
- #define bs_write(s,n,v) ((s)->i_bits_encoded += (n))
- #define bs_write_ue(s,v) ((s)->i_bits_encoded += bs_size_ue(v))
- #define bs_write_se(s,v) ((s)->i_bits_encoded += bs_size_se(v))
- #define bs_write_te(s,v,l) ((s)->i_bits_encoded += bs_size_te(v,l))
- #undef x264_macroblock_write_cavlc
- #define x264_macroblock_write_cavlc static macroblock_size_cavlc
- #include "cavlc.c"
- /* CABAC: not exactly the same. x264_cabac_size_decision() keeps track of
- * fractional bits, but only finite precision. */
- #undef x264_cabac_encode_decision
- #undef x264_cabac_encode_decision_noup
- #undef x264_cabac_encode_bypass
- #undef x264_cabac_encode_terminal
- #undef x264_cabac_encode_ue_bypass
- #define x264_cabac_encode_decision(c,x,v) x264_cabac_size_decision(c,x,v)
- #define x264_cabac_encode_decision_noup(c,x,v) x264_cabac_size_decision_noup(c,x,v)
- #define x264_cabac_encode_terminal(c) ((c)->f8_bits_encoded += 7)
- #define x264_cabac_encode_bypass(c,v) ((c)->f8_bits_encoded += 256)
- #define x264_cabac_encode_ue_bypass(c,e,v) ((c)->f8_bits_encoded += (bs_size_ue_big(v+(1<<e)-1)-e)<<8)
- #undef x264_macroblock_write_cabac
- #define x264_macroblock_write_cabac static macroblock_size_cabac
- #include "cabac.c"
- #define COPY_CABAC h->mc.memcpy_aligned( &cabac_tmp.f8_bits_encoded, &h->cabac.f8_bits_encoded, \
- sizeof(int) + (CHROMA444 ? 1024+12 : 460) )
- #define COPY_CABAC_PART( pos, size ) memcpy( &cb->state[pos], &h->cabac.state[pos], size )
- static ALWAYS_INLINE uint64_t cached_hadamard( x264_t *h, int size, int x, int y )
- {
- static const uint8_t hadamard_shift_x[4] = {4, 4, 3, 3};
- static const uint8_t hadamard_shift_y[4] = {4-0, 3-0, 4-1, 3-1};
- static const uint8_t hadamard_offset[4] = {0, 1, 3, 5};
- int cache_index = (x >> hadamard_shift_x[size]) + (y >> hadamard_shift_y[size])
- + hadamard_offset[size];
- uint64_t res = h->mb.pic.fenc_hadamard_cache[cache_index];
- if( res )
- return res - 1;
- else
- {
- pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
- res = h->pixf.hadamard_ac[size]( fenc, FENC_STRIDE );
- h->mb.pic.fenc_hadamard_cache[cache_index] = res + 1;
- return res;
- }
- }
- static ALWAYS_INLINE int cached_satd( x264_t *h, int size, int x, int y )
- {
- static const uint8_t satd_shift_x[3] = {3, 2, 2};
- static const uint8_t satd_shift_y[3] = {2-1, 3-2, 2-2};
- static const uint8_t satd_offset[3] = {0, 8, 16};
- int cache_index = (x >> satd_shift_x[size - PIXEL_8x4]) + (y >> satd_shift_y[size - PIXEL_8x4])
- + satd_offset[size - PIXEL_8x4];
- int res = h->mb.pic.fenc_satd_cache[cache_index];
- if( res )
- return res - 1;
- else
- {
- pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
- int dc = h->pixf.sad[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
- res = h->pixf.satd[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) - dc;
- h->mb.pic.fenc_satd_cache[cache_index] = res + 1;
- return res;
- }
- }
- /* Psy RD distortion metric: SSD plus "Absolute Difference of Complexities" */
- /* SATD and SA8D are used to measure block complexity. */
- /* The difference between SATD and SA8D scores are both used to avoid bias from the DCT size. Using SATD */
- /* only, for example, results in overusage of 8x8dct, while the opposite occurs when using SA8D. */
- /* FIXME: Is there a better metric than averaged SATD/SA8D difference for complexity difference? */
- /* Hadamard transform is recursive, so a SATD+SA8D can be done faster by taking advantage of this fact. */
- /* This optimization can also be used in non-RD transform decision. */
- static inline int ssd_plane( x264_t *h, int size, int p, int x, int y )
- {
- int satd = 0;
- pixel *fdec = h->mb.pic.p_fdec[p] + x + y*FDEC_STRIDE;
- pixel *fenc = h->mb.pic.p_fenc[p] + x + y*FENC_STRIDE;
- if( p == 0 && h->mb.i_psy_rd )
- {
- /* If the plane is smaller than 8x8, we can't do an SA8D; this probably isn't a big problem. */
- if( size <= PIXEL_8x8 )
- {
- uint64_t fdec_acs = h->pixf.hadamard_ac[size]( fdec, FDEC_STRIDE );
- uint64_t fenc_acs = cached_hadamard( h, size, x, y );
- satd = abs((int32_t)fdec_acs - (int32_t)fenc_acs)
- + abs((int32_t)(fdec_acs>>32) - (int32_t)(fenc_acs>>32));
- satd >>= 1;
- }
- else
- {
- int dc = h->pixf.sad[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
- satd = abs(h->pixf.satd[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) - dc - cached_satd( h, size, x, y ));
- }
- satd = (satd * h->mb.i_psy_rd * h->mb.i_psy_rd_lambda + 128) >> 8;
- }
- return h->pixf.ssd[size](fenc, FENC_STRIDE, fdec, FDEC_STRIDE) + satd;
- }
- static inline int ssd_mb( x264_t *h )
- {
- int i_ssd = ssd_plane( h, PIXEL_16x16, 0, 0, 0 );
- if( CHROMA_FORMAT )
- {
- int chroma_size = h->luma2chroma_pixel[PIXEL_16x16];
- int chroma_ssd = ssd_plane( h, chroma_size, 1, 0, 0 ) + ssd_plane( h, chroma_size, 2, 0, 0 );
- i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
- }
- return i_ssd;
- }
- static int rd_cost_mb( x264_t *h, int i_lambda2 )
- {
- int b_transform_bak = h->mb.b_transform_8x8;
- int i_ssd;
- int i_bits;
- int type_bak = h->mb.i_type;
- x264_macroblock_encode( h );
- if( h->mb.b_deblock_rdo )
- x264_macroblock_deblock( h );
- i_ssd = ssd_mb( h );
- if( IS_SKIP( h->mb.i_type ) )
- {
- i_bits = (1 * i_lambda2 + 128) >> 8;
- }
- else if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- macroblock_size_cabac( h, &cabac_tmp );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 32768 ) >> 16;
- }
- else
- {
- macroblock_size_cavlc( h );
- i_bits = ( (uint64_t)h->out.bs.i_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- h->mb.b_transform_8x8 = b_transform_bak;
- h->mb.i_type = type_bak;
- return X264_MIN( i_ssd + i_bits, COST_MAX );
- }
- /* partition RD functions use 8 bits more precision to avoid large rounding errors at low QPs */
- static uint64_t rd_cost_subpart( x264_t *h, int i_lambda2, int i4, int i_pixel )
- {
- uint64_t i_ssd, i_bits;
- x264_macroblock_encode_p4x4( h, i4 );
- if( i_pixel == PIXEL_8x4 )
- x264_macroblock_encode_p4x4( h, i4+1 );
- if( i_pixel == PIXEL_4x8 )
- x264_macroblock_encode_p4x4( h, i4+2 );
- i_ssd = ssd_plane( h, i_pixel, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
- if( CHROMA444 )
- {
- int chromassd = ssd_plane( h, i_pixel, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
- + ssd_plane( h, i_pixel, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
- chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
- i_ssd += chromassd;
- }
- if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- subpartition_size_cabac( h, &cabac_tmp, i4, i_pixel );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- else
- i_bits = subpartition_size_cavlc( h, i4, i_pixel );
- return (i_ssd<<8) + i_bits;
- }
- uint64_t x264_rd_cost_part( x264_t *h, int i_lambda2, int i4, int i_pixel )
- {
- uint64_t i_ssd, i_bits;
- int i8 = i4 >> 2;
- if( i_pixel == PIXEL_16x16 )
- {
- int i_cost = rd_cost_mb( h, i_lambda2 );
- return i_cost;
- }
- if( i_pixel > PIXEL_8x8 )
- return rd_cost_subpart( h, i_lambda2, i4, i_pixel );
- h->mb.i_cbp_luma = 0;
- x264_macroblock_encode_p8x8( h, i8 );
- if( i_pixel == PIXEL_16x8 )
- x264_macroblock_encode_p8x8( h, i8+1 );
- if( i_pixel == PIXEL_8x16 )
- x264_macroblock_encode_p8x8( h, i8+2 );
- int ssd_x = 8*(i8&1);
- int ssd_y = 8*(i8>>1);
- i_ssd = ssd_plane( h, i_pixel, 0, ssd_x, ssd_y );
- if( CHROMA_FORMAT )
- {
- int chroma_size = h->luma2chroma_pixel[i_pixel];
- int chroma_ssd = ssd_plane( h, chroma_size, 1, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT )
- + ssd_plane( h, chroma_size, 2, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT );
- i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
- }
- if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- partition_size_cabac( h, &cabac_tmp, i8, i_pixel );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- else
- i_bits = (uint64_t)partition_size_cavlc( h, i8, i_pixel ) * i_lambda2;
- return (i_ssd<<8) + i_bits;
- }
- static uint64_t rd_cost_i8x8( x264_t *h, int i_lambda2, int i8, int i_mode, pixel edge[4][32] )
- {
- uint64_t i_ssd, i_bits;
- int plane_count = CHROMA444 ? 3 : 1;
- int i_qp = h->mb.i_qp;
- h->mb.i_cbp_luma &= ~(1<<i8);
- h->mb.b_transform_8x8 = 1;
- for( int p = 0; p < plane_count; p++ )
- {
- x264_mb_encode_i8x8( h, p, i8, i_qp, i_mode, edge[p], 1 );
- i_qp = h->mb.i_chroma_qp;
- }
- i_ssd = ssd_plane( h, PIXEL_8x8, 0, (i8&1)*8, (i8>>1)*8 );
- if( CHROMA444 )
- {
- int chromassd = ssd_plane( h, PIXEL_8x8, 1, (i8&1)*8, (i8>>1)*8 )
- + ssd_plane( h, PIXEL_8x8, 2, (i8&1)*8, (i8>>1)*8 );
- chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
- i_ssd += chromassd;
- }
- if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- partition_i8x8_size_cabac( h, &cabac_tmp, i8, i_mode );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- else
- i_bits = (uint64_t)partition_i8x8_size_cavlc( h, i8, i_mode ) * i_lambda2;
- return (i_ssd<<8) + i_bits;
- }
- static uint64_t rd_cost_i4x4( x264_t *h, int i_lambda2, int i4, int i_mode )
- {
- uint64_t i_ssd, i_bits;
- int plane_count = CHROMA444 ? 3 : 1;
- int i_qp = h->mb.i_qp;
- for( int p = 0; p < plane_count; p++ )
- {
- x264_mb_encode_i4x4( h, p, i4, i_qp, i_mode, 1 );
- i_qp = h->mb.i_chroma_qp;
- }
- i_ssd = ssd_plane( h, PIXEL_4x4, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
- if( CHROMA444 )
- {
- int chromassd = ssd_plane( h, PIXEL_4x4, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
- + ssd_plane( h, PIXEL_4x4, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
- chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
- i_ssd += chromassd;
- }
- if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- partition_i4x4_size_cabac( h, &cabac_tmp, i4, i_mode );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- else
- i_bits = (uint64_t)partition_i4x4_size_cavlc( h, i4, i_mode ) * i_lambda2;
- return (i_ssd<<8) + i_bits;
- }
- static uint64_t rd_cost_chroma( x264_t *h, int i_lambda2, int i_mode, int b_dct )
- {
- uint64_t i_ssd, i_bits;
- if( b_dct )
- x264_mb_encode_chroma( h, 0, h->mb.i_chroma_qp );
- int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
- i_ssd = ssd_plane( h, chromapix, 1, 0, 0 )
- + ssd_plane( h, chromapix, 2, 0, 0 );
- h->mb.i_chroma_pred_mode = i_mode;
- if( h->param.b_cabac )
- {
- x264_cabac_t cabac_tmp;
- COPY_CABAC;
- chroma_size_cabac( h, &cabac_tmp );
- i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
- }
- else
- i_bits = (uint64_t)chroma_size_cavlc( h ) * i_lambda2;
- return (i_ssd<<8) + i_bits;
- }
- /****************************************************************************
- * Trellis RD quantization
- ****************************************************************************/
- #define TRELLIS_SCORE_MAX -1LL // negative marks the node as invalid
- #define TRELLIS_SCORE_BIAS 1LL<<60; // bias so that all valid scores are positive, even after negative contributions from psy
- #define CABAC_SIZE_BITS 8
- #define LAMBDA_BITS 4
- /* precalculate the cost of coding various combinations of bits in a single context */
- void x264_rdo_init( void )
- {
- for( int i_prefix = 0; i_prefix < 15; i_prefix++ )
- {
- for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
- {
- int f8_bits = 0;
- uint8_t ctx = i_ctx;
- for( int i = 1; i < i_prefix; i++ )
- f8_bits += x264_cabac_size_decision2( &ctx, 1 );
- if( i_prefix > 0 && i_prefix < 14 )
- f8_bits += x264_cabac_size_decision2( &ctx, 0 );
- f8_bits += 1 << CABAC_SIZE_BITS; //sign
- x264_cabac_size_unary[i_prefix][i_ctx] = f8_bits;
- x264_cabac_transition_unary[i_prefix][i_ctx] = ctx;
- }
- }
- for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
- {
- int f8_bits = 0;
- uint8_t ctx = i_ctx;
- for( int i = 0; i < 5; i++ )
- f8_bits += x264_cabac_size_decision2( &ctx, 1 );
- f8_bits += 1 << CABAC_SIZE_BITS; //sign
- cabac_size_5ones[i_ctx] = f8_bits;
- cabac_transition_5ones[i_ctx] = ctx;
- }
- }
- typedef struct
- {
- uint64_t score;
- int level_idx; // index into level_tree[]
- uint8_t cabac_state[4]; // just contexts 0,4,8,9 of the 10 relevant to coding abs_level_m1
- } trellis_node_t;
- typedef struct
- {
- uint16_t next;
- uint16_t abs_level;
- } trellis_level_t;
- // TODO:
- // save cabac state between blocks?
- // use trellis' RD score instead of x264_mb_decimate_score?
- // code 8x8 sig/last flags forwards with deadzone and save the contexts at
- // each position?
- // change weights when using CQMs?
- // possible optimizations:
- // make scores fit in 32bit
- // save quantized coefs during rd, to avoid a duplicate trellis in the final encode
- // if trellissing all MBRD modes, finish SSD calculation so we can skip all of
- // the normal dequant/idct/ssd/cabac
- // the unquant_mf here is not the same as dequant_mf:
- // in normal operation (dct->quant->dequant->idct) the dct and idct are not
- // normalized. quant/dequant absorb those scaling factors.
- // in this function, we just do (quant->unquant) and want the output to be
- // comparable to the input. so unquant is the direct inverse of quant,
- // and uses the dct scaling factors, not the idct ones.
- #define SIGN(x,y) ((x^(y >> 31))-(y >> 31))
- #define SET_LEVEL(ndst, nsrc, l) {\
- if( sizeof(trellis_level_t) == sizeof(uint32_t) )\
- M32( &level_tree[levels_used] ) = pack16to32( nsrc.level_idx, l );\
- else\
- level_tree[levels_used] = (trellis_level_t){ nsrc.level_idx, l };\
- ndst.level_idx = levels_used;\
- levels_used++;\
- }
- // encode all values of the dc coef in a block which is known to have no ac
- static NOINLINE
- int trellis_dc_shortcut( int sign_coef, int quant_coef, int unquant_mf, int coef_weight, int lambda2, uint8_t *cabac_state, int cost_sig )
- {
- uint64_t bscore = TRELLIS_SCORE_MAX;
- int ret = 0;
- int q = abs( quant_coef );
- for( int abs_level = q-1; abs_level <= q; abs_level++ )
- {
- int unquant_abs_level = (unquant_mf * abs_level + 128) >> 8;
- /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */
- int d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);
- uint64_t score = (uint64_t)d*d * coef_weight;
- /* code the proposed level, and count how much entropy it would take */
- if( abs_level )
- {
- unsigned f8_bits = cost_sig;
- int prefix = X264_MIN( abs_level - 1, 14 );
- f8_bits += x264_cabac_size_decision_noup2( cabac_state+1, prefix > 0 );
- f8_bits += x264_cabac_size_unary[prefix][cabac_state[5]];
- if( abs_level >= 15 )
- f8_bits += bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS;
- score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
- }
- COPY2_IF_LT( bscore, score, ret, abs_level );
- }
- return SIGN(ret, sign_coef);
- }
- // encode one value of one coef in one context
- static ALWAYS_INLINE
- int trellis_coef( int j, int const_level, int abs_level, int prefix, int suffix_cost,
- int node_ctx, int level1_ctx, int levelgt1_ctx, uint64_t ssd, int cost_siglast[3],
- trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used, int lambda2, uint8_t *level_state )
- {
- uint64_t score = nodes_prev[j].score + ssd;
- /* code the proposed level, and count how much entropy it would take */
- unsigned f8_bits = cost_siglast[ j ? 1 : 2 ];
- uint8_t level1_state = (j >= 3) ? nodes_prev[j].cabac_state[level1_ctx>>2] : level_state[level1_ctx];
- f8_bits += x264_cabac_entropy[level1_state ^ (const_level > 1)];
- uint8_t levelgt1_state;
- if( const_level > 1 )
- {
- levelgt1_state = j >= 6 ? nodes_prev[j].cabac_state[levelgt1_ctx-6] : level_state[levelgt1_ctx];
- f8_bits += x264_cabac_size_unary[prefix][levelgt1_state] + suffix_cost;
- }
- else
- f8_bits += 1 << CABAC_SIZE_BITS;
- score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
- /* save the node if it's better than any existing node with the same cabac ctx */
- if( score < nodes_cur[node_ctx].score )
- {
- nodes_cur[node_ctx].score = score;
- if( j == 2 || (j <= 3 && node_ctx == 4) ) // init from input state
- M32(nodes_cur[node_ctx].cabac_state) = M32(level_state+12);
- else if( j >= 3 )
- M32(nodes_cur[node_ctx].cabac_state) = M32(nodes_prev[j].cabac_state);
- if( j >= 3 ) // skip the transition if we're not going to reuse the context
- nodes_cur[node_ctx].cabac_state[level1_ctx>>2] = x264_cabac_transition[level1_state][const_level > 1];
- if( const_level > 1 && node_ctx == 7 )
- nodes_cur[node_ctx].cabac_state[levelgt1_ctx-6] = x264_cabac_transition_unary[prefix][levelgt1_state];
- nodes_cur[node_ctx].level_idx = nodes_prev[j].level_idx;
- SET_LEVEL( nodes_cur[node_ctx], nodes_prev[j], abs_level );
- }
- return levels_used;
- }
- // encode one value of one coef in all contexts, templated by which value that is.
- // in ctx_lo, the set of live nodes is contiguous and starts at ctx0, so return as soon as we've seen one failure.
- // in ctx_hi, they're contiguous within each block of 4 ctxs, but not necessarily starting at the beginning,
- // so exploiting that would be more complicated.
- static NOINLINE
- int trellis_coef0_0( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used )
- {
- nodes_cur[0].score = nodes_prev[0].score + ssd0;
- nodes_cur[0].level_idx = nodes_prev[0].level_idx;
- for( int j = 1; j < 4 && (int64_t)nodes_prev[j].score >= 0; j++ )
- {
- nodes_cur[j].score = nodes_prev[j].score;
- if( j >= 3 )
- M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
- SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
- }
- return levels_used;
- }
- static NOINLINE
- int trellis_coef0_1( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used )
- {
- for( int j = 1; j < 8; j++ )
- // this branch only affects speed, not function; there's nothing wrong with updating invalid nodes in coef0.
- if( (int64_t)nodes_prev[j].score >= 0 )
- {
- nodes_cur[j].score = nodes_prev[j].score;
- if( j >= 3 )
- M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
- SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
- }
- return levels_used;
- }
- #define COEF(const_level, ctx_hi, j, ...)\
- if( !j || (int64_t)nodes_prev[j].score >= 0 )\
- levels_used = trellis_coef( j, const_level, abs_level, prefix, suffix_cost, __VA_ARGS__,\
- j?ssd1:ssd0, cost_siglast, nodes_cur, nodes_prev,\
- level_tree, levels_used, lambda2, level_state );\
- else if( !ctx_hi )\
- return levels_used;
- static NOINLINE
- int trellis_coef1_0( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
- trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used, int lambda2,
- uint8_t *level_state )
- {
- int abs_level = 1, prefix = 1, suffix_cost = 0;
- COEF( 1, 0, 0, 1, 1, 0 );
- COEF( 1, 0, 1, 2, 2, 0 );
- COEF( 1, 0, 2, 3, 3, 0 );
- COEF( 1, 0, 3, 3, 4, 0 );
- return levels_used;
- }
- static NOINLINE
- int trellis_coef1_1( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
- trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used, int lambda2,
- uint8_t *level_state )
- {
- int abs_level = 1, prefix = 1, suffix_cost = 0;
- COEF( 1, 1, 1, 2, 2, 0 );
- COEF( 1, 1, 2, 3, 3, 0 );
- COEF( 1, 1, 3, 3, 4, 0 );
- COEF( 1, 1, 4, 4, 0, 0 );
- COEF( 1, 1, 5, 5, 0, 0 );
- COEF( 1, 1, 6, 6, 0, 0 );
- COEF( 1, 1, 7, 7, 0, 0 );
- return levels_used;
- }
- static NOINLINE
- int trellis_coefn_0( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
- trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used, int lambda2,
- uint8_t *level_state, int levelgt1_ctx )
- {
- int prefix = X264_MIN( abs_level-1, 14 );
- int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
- COEF( 2, 0, 0, 4, 1, 5 );
- COEF( 2, 0, 1, 4, 2, 5 );
- COEF( 2, 0, 2, 4, 3, 5 );
- COEF( 2, 0, 3, 4, 4, 5 );
- return levels_used;
- }
- static NOINLINE
- int trellis_coefn_1( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
- trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
- trellis_level_t *level_tree, int levels_used, int lambda2,
- uint8_t *level_state, int levelgt1_ctx )
- {
- int prefix = X264_MIN( abs_level-1, 14 );
- int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
- COEF( 2, 1, 1, 4, 2, 5 );
- COEF( 2, 1, 2, 4, 3, 5 );
- COEF( 2, 1, 3, 4, 4, 5 );
- COEF( 2, 1, 4, 5, 0, 6 );
- COEF( 2, 1, 5, 6, 0, 7 );
- COEF( 2, 1, 6, 7, 0, 8 );
- COEF( 2, 1, 7, 7, 0, levelgt1_ctx );
- return levels_used;
- }
- static ALWAYS_INLINE
- int quant_trellis_cabac( x264_t *h, dctcoef *dct,
- udctcoef *quant_mf, udctcoef *quant_bias, const int *unquant_mf,
- const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
- int b_chroma, int dc, int num_coefs, int idx )
- {
- ALIGNED_ARRAY_64( dctcoef, orig_coefs, [64] );
- ALIGNED_ARRAY_64( dctcoef, quant_coefs, [64] );
- const uint32_t *coef_weight1 = num_coefs == 64 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
- const uint32_t *coef_weight2 = num_coefs == 64 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
- const int b_interlaced = MB_INTERLACED;
- uint8_t *cabac_state_sig = &h->cabac.state[ x264_significant_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
- uint8_t *cabac_state_last = &h->cabac.state[ x264_last_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
- int levelgt1_ctx = b_chroma && dc ? 8 : 9;
- if( dc )
- {
- if( num_coefs == 16 )
- {
- memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
- if( !h->quantf.quant_4x4_dc( dct, quant_mf[0] >> 1, quant_bias[0] << 1 ) )
- return 0;
- h->zigzagf.scan_4x4( quant_coefs, dct );
- }
- else
- {
- memcpy( orig_coefs, dct, sizeof(dctcoef)*num_coefs );
- int nz = h->quantf.quant_2x2_dc( &dct[0], quant_mf[0] >> 1, quant_bias[0] << 1 );
- if( num_coefs == 8 )
- nz |= h->quantf.quant_2x2_dc( &dct[4], quant_mf[0] >> 1, quant_bias[0] << 1 );
- if( !nz )
- return 0;
- for( int i = 0; i < num_coefs; i++ )
- quant_coefs[i] = dct[zigzag[i]];
- }
- }
- else
- {
- if( num_coefs == 64 )
- {
- h->mc.memcpy_aligned( orig_coefs, dct, sizeof(dctcoef)*64 );
- if( !h->quantf.quant_8x8( dct, quant_mf, quant_bias ) )
- return 0;
- h->zigzagf.scan_8x8( quant_coefs, dct );
- }
- else //if( num_coefs == 16 )
- {
- memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
- if( !h->quantf.quant_4x4( dct, quant_mf, quant_bias ) )
- return 0;
- h->zigzagf.scan_4x4( quant_coefs, dct );
- }
- }
- int last_nnz = h->quantf.coeff_last[ctx_block_cat]( quant_coefs+b_ac )+b_ac;
- uint8_t *cabac_state = &h->cabac.state[ x264_coeff_abs_level_m1_offset[ctx_block_cat] ];
- /* shortcut for dc-only blocks.
- * this doesn't affect the output, but saves some unnecessary computation. */
- if( last_nnz == 0 && !dc )
- {
- int cost_sig = x264_cabac_size_decision_noup2( &cabac_state_sig[0], 1 )
- + x264_cabac_size_decision_noup2( &cabac_state_last[0], 1 );
- dct[0] = trellis_dc_shortcut( orig_coefs[0], quant_coefs[0], unquant_mf[0], coef_weight2[0], lambda2, cabac_state, cost_sig );
- return !!dct[0];
- }
- #if HAVE_MMX && ARCH_X86_64 && !defined( __MACH__ )
- #define TRELLIS_ARGS unquant_mf, zigzag, lambda2, last_nnz, orig_coefs, quant_coefs, dct,\
- cabac_state_sig, cabac_state_last, M64(cabac_state), M16(cabac_state+8)
- if( num_coefs == 16 && !dc )
- if( b_chroma || !h->mb.i_psy_trellis )
- return h->quantf.trellis_cabac_4x4( TRELLIS_ARGS, b_ac );
- else
- return h->quantf.trellis_cabac_4x4_psy( TRELLIS_ARGS, b_ac, h->mb.pic.fenc_dct4[idx&15], h->mb.i_psy_trellis );
- else if( num_coefs == 64 && !dc )
- if( b_chroma || !h->mb.i_psy_trellis )
- return h->quantf.trellis_cabac_8x8( TRELLIS_ARGS, b_interlaced );
- else
- return h->quantf.trellis_cabac_8x8_psy( TRELLIS_ARGS, b_interlaced, h->mb.pic.fenc_dct8[idx&3], h->mb.i_psy_trellis);
- else if( num_coefs == 8 && dc )
- return h->quantf.trellis_cabac_chroma_422_dc( TRELLIS_ARGS );
- else if( dc )
- return h->quantf.trellis_cabac_dc( TRELLIS_ARGS, num_coefs-1 );
- #endif
- // (# of coefs) * (# of ctx) * (# of levels tried) = 1024
- // we don't need to keep all of those: (# of coefs) * (# of ctx) would be enough,
- // but it takes more time to remove dead states than you gain in reduced memory.
- trellis_level_t level_tree[64*8*2];
- int levels_used = 1;
- /* init trellis */
- trellis_node_t nodes[2][8];
- trellis_node_t *nodes_cur = nodes[0];
- trellis_node_t *nodes_prev = nodes[1];
- trellis_node_t *bnode;
- for( int j = 1; j < 4; j++ )
- nodes_cur[j].score = TRELLIS_SCORE_MAX;
- nodes_cur[0].score = TRELLIS_SCORE_BIAS;
- nodes_cur[0].level_idx = 0;
- level_tree[0].abs_level = 0;
- level_tree[0].next = 0;
- ALIGNED_4( uint8_t level_state[16] );
- memcpy( level_state, cabac_state, 10 );
- level_state[12] = cabac_state[0]; // packed subset for copying into trellis_node_t
- level_state[13] = cabac_state[4];
- level_state[14] = cabac_state[8];
- level_state[15] = cabac_state[9];
- idx &= num_coefs == 64 ? 3 : 15;
- // coefs are processed in reverse order, because that's how the abs value is coded.
- // last_coef and significant_coef flags are normally coded in forward order, but
- // we have to reverse them to match the levels.
- // in 4x4 blocks, last_coef and significant_coef use a separate context for each
- // position, so the order doesn't matter, and we don't even have to update their contexts.
- // in 8x8 blocks, some positions share contexts, so we'll just have to hope that
- // cabac isn't too sensitive.
- int i = last_nnz;
- #define TRELLIS_LOOP(ctx_hi)\
- for( ; i >= b_ac; i-- )\
- {\
- /* skip 0s: this doesn't affect the output, but saves some unnecessary computation. */\
- if( !quant_coefs[i] )\
- {\
- /* no need to calculate ssd of 0s: it's the same in all nodes.\
- * no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s.
- * subtracting from one score is equivalent to adding to the rest. */\
- if( !ctx_hi )\
- {\
- int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
- b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
- uint64_t cost_sig0 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 )\
- * (uint64_t)lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
- nodes_cur[0].score -= cost_sig0;\
- }\
- for( int j = 1; j < (ctx_hi?8:4); j++ )\
- SET_LEVEL( nodes_cur[j], nodes_cur[j], 0 );\
- continue;\
- }\
- \
- int sign_coef = orig_coefs[zigzag[i]];\
- int abs_coef = abs( sign_coef );\
- int q = abs( quant_coefs[i] );\
- int cost_siglast[3]; /* { zero, nonzero, nonzero-and-last } */\
- XCHG( trellis_node_t*, nodes_cur, nodes_prev );\
- for( int j = ctx_hi; j < 8; j++ )\
- nodes_cur[j].score = TRELLIS_SCORE_MAX;\
- \
- if( i < num_coefs-1 || ctx_hi )\
- {\
- int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
- b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
- int lastindex = !dc && num_coefs == 64 ? x264_last_coeff_flag_offset_8x8[i] :\
- b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
- cost_siglast[0] = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 );\
- int cost_sig1 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 1 );\
- cost_siglast[1] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 0 ) + cost_sig1;\
- if( !ctx_hi )\
- cost_siglast[2] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 1 ) + cost_sig1;\
- }\
- else\
- {\
- cost_siglast[0] = cost_siglast[1] = cost_siglast[2] = 0;\
- }\
- \
- /* there are a few cases where increasing the coeff magnitude helps,\
- * but it's only around .003 dB, and skipping them ~doubles the speed of trellis.\
- * could also try q-2: that sometimes helps, but also sometimes decimates blocks\
- * that are better left coded, especially at QP > 40. */\
- uint64_t ssd0[2], ssd1[2];\
- for( int k = 0; k < 2; k++ )\
- {\
- int abs_level = q-1+k;\
- int unquant_abs_level = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[i]]) * abs_level + 128) >> 8);\
- int d = abs_coef - unquant_abs_level;\
- /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */\
- if( h->mb.i_psy_trellis && i && !dc && !b_chroma )\
- {\
- int orig_coef = (num_coefs == 64) ? h->mb.pic.fenc_dct8[idx][zigzag[i]] : h->mb.pic.fenc_dct4[idx][zigzag[i]];\
- int predicted_coef = orig_coef - sign_coef;\
- int psy_value = abs(unquant_abs_level + SIGN(predicted_coef, sign_coef));\
- int psy_weight = coef_weight1[zigzag[i]] * h->mb.i_psy_trellis;\
- ssd1[k] = (uint64_t)d*d * coef_weight2[zigzag[i]] - psy_weight * psy_value;\
- }\
- else\
- /* FIXME: for i16x16 dc is this weight optimal? */\
- ssd1[k] = (uint64_t)d*d * (dc?256:coef_weight2[zigzag[i]]);\
- ssd0[k] = ssd1[k];\
- if( !i && !dc && !ctx_hi )\
- {\
- /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */\
- d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);\
- ssd0[k] = (uint64_t)d*d * coef_weight2[zigzag[i]];\
- }\
- }\
- \
- /* argument passing imposes some significant overhead here. gcc's interprocedural register allocation isn't up to it. */\
- switch( q )\
- {\
- case 1:\
- ssd1[0] += (uint64_t)cost_siglast[0] * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
- levels_used = trellis_coef0_##ctx_hi( ssd0[0]-ssd1[0], nodes_cur, nodes_prev, level_tree, levels_used );\
- levels_used = trellis_coef1_##ctx_hi( ssd0[1]-ssd1[0], ssd1[1]-ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
- goto next##ctx_hi;\
- case 2:\
- levels_used = trellis_coef1_##ctx_hi( ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
- levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
- goto next1;\
- default:\
- levels_used = trellis_coefn_##ctx_hi( q-1, ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
- levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
- goto next1;\
- }\
- next##ctx_hi:;\
- }\
- /* output levels from the best path through the trellis */\
- bnode = &nodes_cur[ctx_hi];\
- for( int j = ctx_hi+1; j < (ctx_hi?8:4); j++ )\
- if( nodes_cur[j].score < bnode->score )\
- bnode = &nodes_cur[j];
- // keep 2 versions of the main quantization loop, depending on which subsets of the node_ctxs are live
- // node_ctx 0..3, i.e. having not yet encountered any coefs that might be quantized to >1
- TRELLIS_LOOP(0);
- if( bnode == &nodes_cur[0] )
- {
- /* We only need to zero an empty 4x4 block. 8x8 can be
- implicitly emptied via zero nnz, as can dc. */
- if( num_coefs == 16 && !dc )
- memset( dct, 0, 16 * sizeof(dctcoef) );
- return 0;
- }
- if( 0 ) // accessible only by goto, not fallthrough
- {
- // node_ctx 1..7 (ctx0 ruled out because we never try both level0 and level2+ on the same coef)
- TRELLIS_LOOP(1);
- }
- int level = bnode->level_idx;
- for( i = b_ac; i <= last_nnz; i++ )
- {
- dct[zigzag[i]] = SIGN(level_tree[level].abs_level, dct[zigzag[i]]);
- level = level_tree[level].next;
- }
- return 1;
- }
- /* FIXME: This is a gigantic hack. See below.
- *
- * CAVLC is much more difficult to trellis than CABAC.
- *
- * CABAC has only three states to track: significance map, last, and the
- * level state machine.
- * CAVLC, by comparison, has five: coeff_token (trailing + total),
- * total_zeroes, zero_run, and the level state machine.
- *
- * I know of no paper that has managed to design a close-to-optimal trellis
- * that covers all five of these and isn't exponential-time. As a result, this
- * "trellis" isn't: it's just a QNS search. Patches welcome for something better.
- * It's actually surprisingly fast, albeit not quite optimal. It's pretty close
- * though; since CAVLC only has 2^16 possible rounding modes (assuming only two
- * roundings as options), a bruteforce search is feasible. Testing shows
- * that this QNS is reasonably close to optimal in terms of compression.
- *
- * TODO:
- * Don't bother changing large coefficients when it wouldn't affect bit cost
- * (e.g. only affecting bypassed suffix bits).
- * Don't re-run all parts of CAVLC bit cost calculation when not necessary.
- * e.g. when changing a coefficient from one non-zero value to another in
- * such a way that trailing ones and suffix length isn't affected. */
- static ALWAYS_INLINE
- int quant_trellis_cavlc( x264_t *h, dctcoef *dct,
- const udctcoef *quant_mf, const int *unquant_mf,
- const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
- int b_chroma, int dc, int num_coefs, int idx, int b_8x8 )
- {
- ALIGNED_ARRAY_16( dctcoef, quant_coefs,[2],[16] );
- ALIGNED_ARRAY_16( dctcoef, coefs,[16] );
- const uint32_t *coef_weight1 = b_8x8 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
- const uint32_t *coef_weight2 = b_8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
- int delta_distortion[16];
- int64_t score = 1ULL<<62;
- int i, j;
- const int f = 1<<15;
- int nC = b_chroma && dc ? 3 + (num_coefs>>2)
- : ct_index[x264_mb_predict_non_zero_code( h, !b_chroma && dc ? (idx - LUMA_DC)*16 : idx )];
- for( i = 0; i < 16; i += 16/sizeof(*coefs) )
- M128( &coefs[i] ) = M128_ZERO;
- /* Code for handling 8x8dct -> 4x4dct CAVLC munging. Input/output use a different
- * step/start/end than internal processing. */
- int step = 1;
- int start = b_ac;
- int end = num_coefs - 1;
- if( b_8x8 )
- {
- start = idx&3;
- end = 60 + start;
- step = 4;
- }
- idx &= 15;
- lambda2 <<= LAMBDA_BITS;
- /* Find last non-zero coefficient. */
- for( i = end; i >= start; i -= step )
- if( (unsigned)(dct[zigzag[i]] * (dc?quant_mf[0]>>1:quant_mf[zigzag[i]]) + f-1) >= 2*f )
- break;
- if( i < start )
- goto zeroblock;
- /* Prepare for QNS search: calculate distortion caused by each DCT coefficient
- * rounding to be searched.
- *
- * We only search two roundings (nearest and nearest-1) like in CABAC trellis,
- * so we just store the difference in distortion between them. */
- int last_nnz = b_8x8 ? i >> 2 : i;
- int coef_mask = 0;
- int round_mask = 0;
- for( i = b_ac, j = start; i <= last_nnz; i++, j += step )
- {
- int coef = dct[zigzag[j]];
- int abs_coef = abs(coef);
- int sign = coef < 0 ? -1 : 1;
- int nearest_quant = ( f + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
- quant_coefs[1][i] = quant_coefs[0][i] = sign * nearest_quant;
- coefs[i] = quant_coefs[1][i];
- if( nearest_quant )
- {
- /* We initialize the trellis with a deadzone halfway between nearest rounding
- * and always-round-down. This gives much better results than initializing to either
- * extreme.
- * FIXME: should we initialize to the deadzones used by deadzone quant? */
- int deadzone_quant = ( f/2 + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
- int unquant1 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-0) + 128) >> 8);
- int unquant0 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-1) + 128) >> 8);
- int d1 = abs_coef - unquant1;
- int d0 = abs_coef - unquant0;
- delta_distortion[i] = (d0*d0 - d1*d1) * (dc?256:coef_weight2[zigzag[j]]);
- /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */
- if( h->mb.i_psy_trellis && j && !dc && !b_chroma )
- {
- int orig_coef = b_8x8 ? h->mb.pic.fenc_dct8[idx>>2][zigzag[j]] : h->mb.pic.fenc_dct4[idx][zigzag[j]];
- int predicted_coef = orig_coef - coef;
- int psy_weight = coef_weight1[zigzag[j]];
- int psy_value0 = h->mb.i_psy_trellis * abs(predicted_coef + unquant0 * sign);
- int psy_value1 = h->mb.i_psy_trellis * abs(predicted_coef + unquant1 * sign);
- delta_distortion[i] += (psy_value0 - psy_value1) * psy_weight;
- }
- quant_coefs[0][i] = sign * (nearest_quant-1);
- if( deadzone_quant != nearest_quant )
- coefs[i] = quant_coefs[0][i];
- else
- round_mask |= 1 << i;
- }
- else
- delta_distortion[i] = 0;
- coef_mask |= (!!coefs[i]) << i;
- }
- /* Calculate the cost of the starting state. */
- h->out.bs.i_bits_encoded = 0;
- if( !coef_mask )
- bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
- else
- cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
- score = (int64_t)h->out.bs.i_bits_encoded * lambda2;
- /* QNS loop: pick the change that improves RD the most, apply it, repeat.
- * coef_mask and round_mask are used to simplify tracking of nonzeroness
- * and rounding modes chosen. */
- while( 1 )
- {
- int64_t iter_score = score;
- int iter_distortion_delta = 0;
- int iter_coef = -1;
- int iter_mask = coef_mask;
- int iter_round = round_mask;
- for( i = b_ac; i <= last_nnz; i++ )
- {
- if( !delta_distortion[i] )
- continue;
- /* Set up all the variables for this iteration. */
- int cur_round = round_mask ^ (1 << i);
- int round_change = (cur_round >> i)&1;
- int old_coef = coefs[i];
- int new_coef = quant_coefs[round_change][i];
- int cur_mask = (coef_mask&~(1 << i))|(!!new_coef << i);
- int cur_distortion_delta = delta_distortion[i] * (round_change ? -1 : 1);
- int64_t cur_score = cur_distortion_delta;
- coefs[i] = new_coef;
- /* Count up bits. */
- h->out.bs.i_bits_encoded = 0;
- if( !cur_mask )
- bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
- else
- cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
- cur_score += (int64_t)h->out.bs.i_bits_encoded * lambda2;
- coefs[i] = old_coef;
- if( cur_score < iter_score )
- {
- iter_score = cur_score;
- iter_coef = i;
- iter_mask = cur_mask;
- iter_round = cur_round;
- iter_distortion_delta = cur_distortion_delta;
- }
- }
- if( iter_coef >= 0 )
- {
- score = iter_score - iter_distortion_delta;
- coef_mask = iter_mask;
- round_mask = iter_round;
- coefs[iter_coef] = quant_coefs[((round_mask >> iter_coef)&1)][iter_coef];
- /* Don't try adjusting coefficients we've already adjusted.
- * Testing suggests this doesn't hurt results -- and sometimes actually helps. */
- delta_distortion[iter_coef] = 0;
- }
- else
- break;
- }
- if( coef_mask )
- {
- for( i = b_ac, j = start; i < num_coefs; i++, j += step )
- dct[zigzag[j]] = coefs[i];
- return 1;
- }
- zeroblock:
- if( !dc )
- {
- if( b_8x8 )
- for( i = start; i <= end; i+=step )
- dct[zigzag[i]] = 0;
- else
- memset( dct, 0, 16*sizeof(dctcoef) );
- }
- return 0;
- }
- int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp, int ctx_block_cat, int b_intra, int idx )
- {
- if( h->param.b_cabac )
- return quant_trellis_cabac( h, dct,
- h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
- h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
- ctx_block_cat, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx );
- return quant_trellis_cavlc( h, dct,
- h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
- DCT_LUMA_DC, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx, 0 );
- }
- static const uint8_t zigzag_scan2x2[4] = { 0, 1, 2, 3 };
- static const uint8_t zigzag_scan2x4[8] = { 0, 2, 1, 4, 6, 3, 5, 7 };
- int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx )
- {
- const uint8_t *zigzag;
- int num_coefs;
- int quant_cat = CQM_4IC+1 - b_intra;
- if( CHROMA_FORMAT == CHROMA_422 )
- {
- zigzag = zigzag_scan2x4;
- num_coefs = 8;
- }
- else
- {
- zigzag = zigzag_scan2x2;
- num_coefs = 4;
- }
- if( h->param.b_cabac )
- return quant_trellis_cabac( h, dct,
- h->quant4_mf[quant_cat][i_qp], h->quant4_bias0[quant_cat][i_qp],
- h->unquant4_mf[quant_cat][i_qp], zigzag,
- DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx );
- return quant_trellis_cavlc( h, dct,
- h->quant4_mf[quant_cat][i_qp], h->unquant4_mf[quant_cat][i_qp], zigzag,
- DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx, 0 );
- }
- int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
- int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
- {
- static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};
- int b_ac = ctx_ac[ctx_block_cat];
- if( h->param.b_cabac )
- return quant_trellis_cabac( h, dct,
- h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
- h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
- ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx );
- return quant_trellis_cavlc( h, dct,
- h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp],
- x264_zigzag_scan4[MB_INTERLACED],
- ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx, 0 );
- }
- int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
- int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
- {
- if( h->param.b_cabac )
- {
- return quant_trellis_cabac( h, dct,
- h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias0[i_quant_cat][i_qp],
- h->unquant8_mf[i_quant_cat][i_qp], x264_zigzag_scan8[MB_INTERLACED],
- ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 64, idx );
- }
- /* 8x8 CAVLC is split into 4 4x4 blocks */
- int nzaccum = 0;
- for( int i = 0; i < 4; i++ )
- {
- int nz = quant_trellis_cavlc( h, dct,
- h->quant8_mf[i_quant_cat][i_qp], h->unquant8_mf[i_quant_cat][i_qp],
- x264_zigzag_scan8[MB_INTERLACED],
- DCT_LUMA_4x4, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 16, idx*4+i, 1 );
- /* Set up nonzero count for future calls */
- h->mb.cache.non_zero_count[x264_scan8[idx*4+i]] = nz;
- nzaccum |= nz;
- }
- STORE_8x8_NNZ( 0, idx, 0 );
- return nzaccum;
- }
|