video_rank.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from utils import FilterVideos
  7. log_ = Log()
  8. config_ = set_config()
  9. def video_rank(data, size):
  10. """
  11. 视频分发排序
  12. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  13. :param size: 请求数
  14. :return: rank_result
  15. """
  16. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  17. return None
  18. # 将各路召回的视频按照score从大到小排序
  19. # ROV召回池
  20. rov_recall_rank = sorted(data['rov_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  21. # 流量池
  22. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  23. # 对各路召回的视频进行去重
  24. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank)
  25. log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  26. rov_recall_rank, flow_recall_rank))
  27. # 从ROV召回池中获取top k
  28. if len(rov_recall_rank) > 0:
  29. rank_result = rov_recall_rank[:config_.K]
  30. rov_recall_rank = rov_recall_rank[config_.K:]
  31. else:
  32. rank_result = flow_recall_rank[:config_.K]
  33. flow_recall_rank = flow_recall_rank[config_.K:]
  34. # 按概率 p 及score排序获取 size - k 个视频
  35. i = 0
  36. while i < size - config_.K:
  37. # 随机生成[0, 1)浮点数
  38. rand = random.random()
  39. log_.info('rand: {}'.format(rand))
  40. if rand < config_.P:
  41. if flow_recall_rank:
  42. rank_result.append(flow_recall_rank[0])
  43. flow_recall_rank.remove(flow_recall_rank[0])
  44. else:
  45. rank_result.extend(rov_recall_rank[:size - config_.K - i])
  46. return rank_result
  47. else:
  48. if rov_recall_rank:
  49. rank_result.append(rov_recall_rank[0])
  50. rov_recall_rank.remove(rov_recall_rank[0])
  51. else:
  52. rank_result.extend(flow_recall_rank[:size - config_.K - i])
  53. return rank_result
  54. i += 1
  55. return rank_result
  56. def remove_duplicate(rov_recall, flow_recall):
  57. """
  58. 对多路召回的视频去重
  59. 去重原则:
  60. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  61. :param rov_recall: ROV召回池-已排序
  62. :param flow_recall: 流量池-已排序
  63. :return:
  64. """
  65. flow_recall_result = []
  66. rov_recall_remove = []
  67. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  68. # rov_recall topK
  69. for item in rov_recall[:config_.K]:
  70. if item['videoId'] in flow_recall_video_ids:
  71. flow_recall_video_ids.remove(item['videoId'])
  72. # other
  73. for item in rov_recall[config_.K:]:
  74. if item['videoId'] in flow_recall_video_ids:
  75. rov_recall_remove.append(item)
  76. # rov recall remove
  77. for item in rov_recall_remove:
  78. rov_recall.remove(item)
  79. # flow recall remove
  80. for item in flow_recall:
  81. if item['videoId'] in flow_recall_video_ids:
  82. flow_recall_result.append(item)
  83. return rov_recall, flow_recall_result
  84. async def bottom_strategy(size, app_type, ab_code):
  85. """
  86. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  87. :param size: 需要获取的视频数
  88. :param app_type: 产品标识 type-int
  89. :param ab_code: abCode
  90. :param mid:
  91. :param uid:
  92. :return:
  93. """
  94. pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
  95. key_name, _ = await pool_recall.get_pool_redis_key(pool_type='rov')
  96. if not key_name:
  97. log_.info('bottom strategy no data!')
  98. return []
  99. data = await aiocache.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  100. if not data:
  101. log_.info('bottom strategy no data!')
  102. return []
  103. # 状态过滤
  104. filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  105. filtered_data = await filter_videos.filter_video_status(video_ids=data)
  106. if len(filtered_data) > size:
  107. random_data = numpy.random.choice(filtered_data, size, False)
  108. else:
  109. random_data = filtered_data
  110. bottom_data = [{'videoId': item, 'pushFrom': 'bottom_strategy', 'abCode': ab_code} for item in random_data]
  111. return bottom_data
  112. if __name__ == '__main__':
  113. d_test = [[{'videoId': 3674236, 'rovScore': 99.24105262298141, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 1915009, 'rovScore': 99.248872388032, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 9033859, 'rovScore': 99.21956695197761, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 4258137, 'rovScore': 99.24737622823497, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 9034962, 'rovScore': 99.18993382219318, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 1922051, 'rovScore': 99.2351969813565, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 7829308, 'rovScore': 99.25465474490638, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 3247671, 'rovScore': 99.24601245746983, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 5831941, 'rovScore': 99.16776814766304, 'pushFrom': 'recall_pool', 'abCode': 10000}, {'videoId': 7837973, 'rovScore': 99.253749334822, 'pushFrom': 'recall_pool', 'abCode': 10000}], [{'videoId': 9035245, 'flowPool': '1#1#1#1636085384424', 'rovScore': 1.0, 'pushFrom': 'flow_pool', 'abCode': 10000}, {'videoId': 9034828, 'flowPool': '1#1#1#1636090368461', 'rovScore': 1.0, 'pushFrom': 'flow_pool', 'abCode': 10000}, {'videoId': 9035244, 'flowPool': '1#1#1#1636085467105', 'rovScore': 1.0, 'pushFrom': 'flow_pool', 'abCode': 10000}, {'videoId': 9035237, 'flowPool': '1#1#1#1636086478074', 'rovScore': 1.0, 'pushFrom': 'flow_pool', 'abCode': 10000}]]
  114. data = {
  115. 'rov_pool_recall': d_test[0],
  116. 'flow_pool_recall': d_test[1]
  117. }
  118. res = video_rank(data, size=10)
  119. for item in res:
  120. print(item)