video_rank.py 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. import json
  2. import random
  3. import numpy
  4. from log import Log
  5. from config import set_config
  6. from video_recall import PoolRecall
  7. from db_helper import RedisHelper
  8. from utils import FilterVideos, send_msg_to_feishu
  9. log_ = Log()
  10. config_ = set_config()
  11. def video_rank(data, size, top_K, flow_pool_P):
  12. """
  13. 视频分发排序
  14. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  15. :param size: 请求数
  16. :param top_K: 保证topK为召回池视频 type-int
  17. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  18. :return: rank_result
  19. """
  20. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  21. return []
  22. # 将各路召回的视频按照score从大到小排序
  23. # 最惊奇相关推荐相似视频
  24. # relevant_recall = [item for item in data['rov_pool_recall']
  25. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  26. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  27. # 最惊奇完整影视视频
  28. # whole_movies_recall = [item for item in data['rov_pool_recall']
  29. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  30. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  31. # 最惊奇影视解说视频
  32. # talk_videos_recall = [item for item in data['rov_pool_recall']
  33. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  34. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  35. # 小时级更新数据
  36. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  37. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  38. # 相对30天天级规则更新数据
  39. day_30_recall = [item for item in data['rov_pool_recall']
  40. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  41. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  42. # 地域分组小时级规则更新数据
  43. region_h_recall = [item for item in data['rov_pool_recall']
  44. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  45. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  46. # 地域分组小时级更新24h规则更新数据
  47. region_24h_recall = [item for item in data['rov_pool_recall']
  48. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  49. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  50. print("region_24h_recall:", len(region_24h_recall_rank))
  51. # 地域分组天级规则更新数据
  52. # region_day_recall = [item for item in data['rov_pool_recall']
  53. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  54. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  55. # 相对24h规则更新数据
  56. rule_24h_recall = [item for item in data['rov_pool_recall']
  57. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  58. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  59. print("rule_24h_recall_rank:", len(rule_24h_recall_rank))
  60. # 相对24h规则筛选后剩余更新数据
  61. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  62. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  63. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  64. print("rule_24h_dup_recall_rank:", len(rule_24h_dup_recall_rank))
  65. # 相对48h规则更新数据
  66. rule_48h_recall = [item for item in data['rov_pool_recall']
  67. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  68. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  69. # 相对48h规则筛选后剩余更新数据
  70. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  71. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  72. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  73. # 天级规则更新数据
  74. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  75. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  76. # ROV召回池
  77. # rov_initial_recall = [
  78. # item for item in data['rov_pool_recall']
  79. # if item.get('pushFrom') not in
  80. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  81. # config_.PUSH_FROM['rov_recall_h'],
  82. # config_.PUSH_FROM['rov_recall_region_h'],
  83. # config_.PUSH_FROM['rov_recall_region_24h'],
  84. # config_.PUSH_FROM['rov_recall_region_day'],
  85. # config_.PUSH_FROM['rov_recall_24h'],
  86. # config_.PUSH_FROM['rov_recall_24h_dup'],
  87. # config_.PUSH_FROM['rov_recall_48h'],
  88. # config_.PUSH_FROM['rov_recall_48h_dup'],
  89. # config_.PUSH_FROM['rov_recall_day'],
  90. # config_.PUSH_FROM['whole_movies'],
  91. # config_.PUSH_FROM['talk_videos']]
  92. # ]
  93. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  94. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  95. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  96. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  97. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  98. # day_recall_rank + rov_initial_recall_rank
  99. rov_recall_rank = day_30_recall_rank + \
  100. region_h_recall_rank + region_24h_recall_rank + \
  101. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  102. rule_48h_recall_rank + rule_48h_dup_recall_rank
  103. # 流量池
  104. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  105. # 对各路召回的视频进行去重
  106. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  107. top_K=top_K)
  108. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  109. # rov_recall_rank, flow_recall_rank))
  110. # rank_result = relevant_recall_rank
  111. rank_result = []
  112. # 从ROV召回池中获取top k
  113. if len(rov_recall_rank) > 0:
  114. rank_result.extend(rov_recall_rank[:top_K])
  115. rov_recall_rank = rov_recall_rank[top_K:]
  116. else:
  117. rank_result.extend(flow_recall_rank[:top_K])
  118. flow_recall_rank = flow_recall_rank[top_K:]
  119. # 按概率 p 及score排序获取 size - k 个视频
  120. i = 0
  121. while i < size - top_K:
  122. # 随机生成[0, 1)浮点数
  123. rand = random.random()
  124. # log_.info('rand: {}'.format(rand))
  125. if rand < flow_pool_P:
  126. if flow_recall_rank:
  127. rank_result.append(flow_recall_rank[0])
  128. flow_recall_rank.remove(flow_recall_rank[0])
  129. else:
  130. rank_result.extend(rov_recall_rank[:size - top_K - i])
  131. return rank_result[:size]
  132. else:
  133. if rov_recall_rank:
  134. rank_result.append(rov_recall_rank[0])
  135. rov_recall_rank.remove(rov_recall_rank[0])
  136. else:
  137. rank_result.extend(flow_recall_rank[:size - top_K - i])
  138. return rank_result[:size]
  139. i += 1
  140. return rank_result[:size]
  141. def video_new_rank(videoIds, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  142. """
  143. 视频分发排序
  144. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  145. :param size: 请求数
  146. :param top_K: 保证topK为召回池视频 type-int
  147. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  148. :return: rank_result
  149. """
  150. add_flow_set = set('')
  151. if not videoIds or len(videoIds)==0:
  152. return [], add_flow_set
  153. redisObj = RedisHelper()
  154. vidKeys = []
  155. for vid in videoIds:
  156. vidKeys.append("k_p:"+str(vid))
  157. #print("vidKeys:", vidKeys)
  158. video_scores = redisObj.get_batch_key(vidKeys)
  159. #print(video_scores)
  160. video_items = []
  161. for i in range(len(video_scores)):
  162. try:
  163. #print(video_scores[i])
  164. if video_scores[i] is None:
  165. video_items.append((videoIds[i], 0.0))
  166. else:
  167. video_score_str = json.loads(video_scores[i])
  168. #print("video_score_str:",video_score_str)
  169. video_items.append((videoIds[i], video_score_str[0]))
  170. except Exception:
  171. video_items.append((videoIds[i], 0.0))
  172. sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  173. #print("sort_items:", sort_items)
  174. rov_recall_rank = sort_items
  175. fast_flow_recall_rank = []
  176. flow_recall_rank = []
  177. for item in sort_items:
  178. if item[0] in fast_flow_set:
  179. fast_flow_recall_rank.append(item)
  180. elif item[0] in flow_set:
  181. flow_recall_rank.append(item)
  182. # all flow result
  183. all_flow_recall_rank = fast_flow_recall_rank+flow_recall_rank
  184. rank_result = []
  185. rank_set = set('')
  186. # 从ROV召回池中获取top k
  187. if len(rov_recall_rank) > 0:
  188. rank_result.extend(rov_recall_rank[:top_K])
  189. rov_recall_rank = rov_recall_rank[top_K:]
  190. else:
  191. rank_result.extend(all_flow_recall_rank[:top_K])
  192. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  193. for rank_item in rank_result:
  194. rank_set.add(rank_item[0])
  195. #print("rank_result:", rank_result)
  196. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  197. i = 0
  198. left_quato = size - top_K
  199. j = 0
  200. jj = 0
  201. while i < left_quato and (j<len(all_flow_recall_rank) or jj<len(rov_recall_rank)):
  202. # 随机生成[0, 1)浮点数
  203. rand = random.random()
  204. # log_.info('rand: {}'.format(rand))
  205. if rand < flow_pool_P:
  206. for flow_item in all_flow_recall_rank:
  207. j+=1
  208. if flow_item[0] in rank_set:
  209. continue
  210. else:
  211. rank_result.append(flow_item)
  212. rank_set.add(flow_item[0])
  213. add_flow_set.add(flow_item[0])
  214. i += 1
  215. if i>= left_quato:
  216. break
  217. else:
  218. for recall_item in rov_recall_rank:
  219. jj+=1
  220. if recall_item[0] in rank_set:
  221. continue
  222. else:
  223. rank_result.append(recall_item)
  224. rank_set.add(recall_item[0])
  225. i += 1
  226. if i>= left_quato:
  227. break
  228. #print("rank_result:", rank_result)
  229. #print("add_flow_set:", add_flow_set)
  230. return rank_result[:size], add_flow_set
  231. def refactor_video_rank(rov_recall_rank, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  232. """
  233. 视频分发排序
  234. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  235. :param size: 请求数
  236. :param top_K: 保证topK为召回池视频 type-int
  237. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  238. :return: rank_result
  239. """
  240. if not rov_recall_rank or len(rov_recall_rank) == 0:
  241. return []
  242. fast_flow_recall_rank = []
  243. flow_recall_rank = []
  244. for item in rov_recall_rank:
  245. vid = item.get('videoId', 0)
  246. #print(item)
  247. if vid in fast_flow_set:
  248. fast_flow_recall_rank.append(item)
  249. elif vid in flow_set:
  250. flow_recall_rank.append(item)
  251. # all flow result
  252. all_flow_recall_rank = fast_flow_recall_rank + flow_recall_rank
  253. rank_result = []
  254. rank_set = set('')
  255. # 从ROV召回池中获取top k
  256. if len(rov_recall_rank) > 0:
  257. rank_result.extend(rov_recall_rank[:top_K])
  258. rov_recall_rank = rov_recall_rank[top_K:]
  259. else:
  260. rank_result.extend(all_flow_recall_rank[:top_K])
  261. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  262. #已存放了多少VID
  263. for rank_item in rank_result:
  264. rank_set.add(rank_item.get('videoId', 0))
  265. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  266. i = 0
  267. while i < size - top_K:
  268. # 随机生成[0, 1)浮点数
  269. rand = random.random()
  270. # log_.info('rand: {}'.format(rand))
  271. if rand < flow_pool_P:
  272. for flow_item in all_flow_recall_rank:
  273. flow_vid = flow_item.get('videoId', 0)
  274. if flow_vid in rank_set:
  275. continue
  276. else:
  277. rank_result.append(flow_item)
  278. rank_set.add(flow_vid)
  279. else:
  280. for recall_item in rov_recall_rank:
  281. flow_vid = recall_item.get('videoId', 0)
  282. if flow_vid in rank_set:
  283. continue
  284. else:
  285. rank_result.append(recall_item)
  286. rank_set.add(flow_vid)
  287. i += 1
  288. return rank_result[:size]
  289. def remove_duplicate(rov_recall, flow_recall, top_K):
  290. """
  291. 对多路召回的视频去重
  292. 去重原则:
  293. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  294. :param rov_recall: ROV召回池-已排序
  295. :param flow_recall: 流量池-已排序
  296. :param top_K: 保证topK为召回池视频 type-int
  297. :return:
  298. """
  299. flow_recall_result = []
  300. rov_recall_remove = []
  301. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  302. # rov_recall topK
  303. for item in rov_recall[:top_K]:
  304. if item['videoId'] in flow_recall_video_ids:
  305. flow_recall_video_ids.remove(item['videoId'])
  306. # other
  307. for item in rov_recall[top_K:]:
  308. if item['videoId'] in flow_recall_video_ids:
  309. rov_recall_remove.append(item)
  310. # rov recall remove
  311. for item in rov_recall_remove:
  312. rov_recall.remove(item)
  313. # flow recall remove
  314. for item in flow_recall:
  315. if item['videoId'] in flow_recall_video_ids:
  316. flow_recall_result.append(item)
  317. return rov_recall, flow_recall_result
  318. def bottom_strategy(request_id, size, app_type, ab_code, params):
  319. """
  320. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  321. :param request_id: request_id
  322. :param size: 需要获取的视频数
  323. :param app_type: 产品标识 type-int
  324. :param ab_code: abCode
  325. :param params:
  326. :return:
  327. """
  328. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  329. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  330. redis_helper = RedisHelper(params=params)
  331. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  332. if not data:
  333. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  334. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  335. # 二次兜底
  336. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  337. return bottom_data
  338. # 视频状态过滤采用离线定时过滤方案
  339. # 状态过滤
  340. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  341. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  342. if len(data) > size:
  343. random_data = numpy.random.choice(data, size, False)
  344. else:
  345. random_data = data
  346. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  347. for item in random_data]
  348. return bottom_data
  349. def bottom_strategy_last(size, app_type, ab_code, params):
  350. """
  351. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  352. :param size: 需要获取的视频数
  353. :param app_type: 产品标识 type-int
  354. :param ab_code: abCode
  355. :param params:
  356. :return:
  357. """
  358. redis_helper = RedisHelper(params=params)
  359. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  360. random_data = numpy.random.choice(bottom_data, size * 30, False)
  361. # 视频状态过滤采用离线定时过滤方案
  362. # 状态过滤
  363. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  364. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  365. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  366. for video_id in random_data[:size]]
  367. return bottom_data
  368. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  369. """
  370. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  371. :param size: 需要获取的视频数
  372. :param app_type: 产品标识 type-int
  373. :param mid: mid
  374. :param uid: uid
  375. :param ab_code: abCode
  376. :param client_info: 地域信息
  377. :param params:
  378. :return:
  379. """
  380. # 获取存在城市分组数据的城市编码列表
  381. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  382. # 获取provinceCode
  383. province_code = client_info.get('provinceCode', '-1')
  384. # 获取cityCode
  385. city_code = client_info.get('cityCode', '-1')
  386. if city_code in city_code_list:
  387. # 分城市数据存在时,获取城市分组数据
  388. region_code = city_code
  389. else:
  390. region_code = province_code
  391. if region_code == '':
  392. region_code = '-1'
  393. redis_helper = RedisHelper(params=params)
  394. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  395. bottom_result = []
  396. if bottom_data is None:
  397. return bottom_result
  398. if len(bottom_data) > 0:
  399. try:
  400. random_data = numpy.random.choice(bottom_data, size * 5, False)
  401. except Exception as e:
  402. random_data = bottom_data
  403. video_ids = [int(item) for item in random_data]
  404. # 过滤
  405. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  406. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  407. if filtered_data:
  408. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  409. for video_id in filtered_data[:size]]
  410. return bottom_result
  411. def video_rank_by_w_h_rate(videos):
  412. """
  413. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  414. :param videos:
  415. :return:
  416. """
  417. redis_helper = RedisHelper()
  418. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  419. top_2_push_from_flag = [False, False]
  420. for i, video in enumerate(videos[:2]):
  421. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  422. top_2_push_from_flag[i] = True
  423. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  424. return videos
  425. # ##### 判断前两个视频是否为横屏
  426. top_2_w_h_rate_flag = [False, False]
  427. for i, video in enumerate(videos[:2]):
  428. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  429. # 视频来源为置顶 或 流量池时,不做判断
  430. top_2_w_h_rate_flag[i] = True
  431. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  432. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  433. w_h_rate = redis_helper.get_score_with_value(
  434. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  435. if w_h_rate is not None:
  436. top_2_w_h_rate_flag[i] = True
  437. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  438. # 视频来源为 二层兜底时,判断是否是横屏
  439. w_h_rate = redis_helper.get_score_with_value(
  440. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  441. if w_h_rate is not None:
  442. top_2_w_h_rate_flag[i] = True
  443. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  444. return videos
  445. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  446. # 记录横屏视频位置
  447. horizontal_video_index = []
  448. # 记录流量池视频位置
  449. flow_video_index = []
  450. # 记录置顶视频位置
  451. top_video_index = []
  452. for i, video in enumerate(videos):
  453. # 视频来源为置顶
  454. if video['pushFrom'] == config_.PUSH_FROM['top']:
  455. top_video_index.append(i)
  456. # 视频来源为流量池
  457. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  458. flow_video_index.append(i)
  459. # 视频来源为rov召回池 或 一层兜底
  460. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  461. w_h_rate = redis_helper.get_score_with_value(
  462. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  463. if w_h_rate is not None:
  464. horizontal_video_index.append(i)
  465. else:
  466. continue
  467. # 视频来源为 二层兜底
  468. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  469. w_h_rate = redis_helper.get_score_with_value(
  470. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  471. if w_h_rate is not None:
  472. horizontal_video_index.append(i)
  473. else:
  474. continue
  475. # 重新排序
  476. top2_index = []
  477. for i in range(2):
  478. if i in top_video_index:
  479. top2_index.append(i)
  480. elif i in flow_video_index:
  481. top2_index.append(i)
  482. flow_video_index.remove(i)
  483. elif i in horizontal_video_index:
  484. top2_index.append(i)
  485. horizontal_video_index.remove(i)
  486. elif len(horizontal_video_index) > 0:
  487. # 调整横屏视频到第一位
  488. top2_index.append(horizontal_video_index[0])
  489. # 从横屏位置记录中移除
  490. horizontal_video_index.pop(0)
  491. elif i == 0:
  492. return videos
  493. # 重排
  494. flow_result = [videos[i] for i in flow_video_index]
  495. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  496. top2_result = []
  497. for i, j in enumerate(top2_index):
  498. item = videos[j]
  499. if i != j:
  500. # 修改abCode
  501. item['abCode'] = config_.AB_CODE['w_h_rate']
  502. top2_result.append(item)
  503. new_rank_result = top2_result
  504. for i in range(len(top2_index), len(videos)):
  505. if i in flow_video_index:
  506. new_rank_result.append(flow_result[0])
  507. flow_result.pop(0)
  508. else:
  509. new_rank_result.append(other_result[0])
  510. other_result.pop(0)
  511. return new_rank_result
  512. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  513. """
  514. 视频分发排序 - 包含老视频, 老视频插入固定位置
  515. :param rank_result: 排序后的结果
  516. :param size: 请求数
  517. :param old_video_index: 老视频插入的位置索引,默认为2
  518. :return: new_rank_result
  519. """
  520. if not old_video_recall:
  521. return rank_result
  522. if not rank_result:
  523. return old_video_recall[:size]
  524. # 视频去重
  525. rank_video_ids = [item['videoId'] for item in rank_result]
  526. old_video_remove = []
  527. for old_video in old_video_recall:
  528. if old_video['videoId'] in rank_video_ids:
  529. old_video_remove.append(old_video)
  530. for item in old_video_remove:
  531. old_video_recall.remove(item)
  532. if not old_video_recall:
  533. return rank_result
  534. # 插入老视频
  535. # 随机获取一个视频
  536. ind = random.randint(0, len(old_video_recall) - 1)
  537. old_video = old_video_recall[ind]
  538. # 插入
  539. if len(rank_result) < top_K:
  540. new_rank_result = rank_result + [old_video]
  541. else:
  542. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  543. if len(new_rank_result) > size:
  544. # 判断后两位视频来源
  545. push_from_1 = new_rank_result[-1]['pushFrom']
  546. push_from_2 = new_rank_result[-2]['pushFrom']
  547. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  548. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  549. return new_rank_result[:size]
  550. def video_new_rank2(data, size, top_K, flow_pool_P, ab_code, exp_config=None):
  551. """
  552. 视频分发排序
  553. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  554. :param size: 请求数
  555. :param top_K: 保证topK为召回池视频 type-int
  556. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  557. :return: rank_result
  558. """
  559. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  560. return [], 0
  561. redisObj = RedisHelper()
  562. vidKeys = []
  563. recall_list = []
  564. pre_str = "k_p2:"
  565. if ab_code == 60052 or ab_code == 60053 or ab_code==60057:
  566. pre_str = "k_p2:"
  567. elif ab_code == 60054:
  568. pre_str = "k_p3:"
  569. elif ab_code == 60055:
  570. pre_str = "k_p4:"
  571. elif ab_code == 60056:
  572. pre_str = "k_p5:"
  573. #print("pre_str:", pre_str)
  574. for recall_item in data['rov_pool_recall']:
  575. if len(recall_item)<=0:
  576. continue
  577. vid = recall_item.get("videoId",0)
  578. vidKeys.append(pre_str+ str(vid))
  579. recall_list.append(recall_item)
  580. #print("vidKeys:", vidKeys)
  581. video_scores = redisObj.get_batch_key(vidKeys)
  582. #print("video_score:",video_scores)
  583. for i in range(len(video_scores)):
  584. try:
  585. # print(video_scores[i])
  586. if video_scores[i] is None:
  587. recall_list[i]['sort_score']= 0.0
  588. else:
  589. video_score_str = json.loads(video_scores[i])
  590. #print("video_score_str:", video_score_str)
  591. recall_list[i]['sort_score'] = video_score_str[0]
  592. except Exception :
  593. recall_list[i]['sort_score'] = 0.0
  594. #sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  595. rov_recall_rank =sorted(recall_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  596. print(rov_recall_rank)
  597. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  598. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  599. top_K=top_K)
  600. rank_result = []
  601. rank_set = set('')
  602. # 从ROV召回池中获取top k
  603. if len(rov_recall_rank) > 0:
  604. rank_result.extend(rov_recall_rank[:top_K])
  605. rov_recall_rank = rov_recall_rank[top_K:]
  606. else:
  607. rank_result.extend(flow_recall_rank[:top_K])
  608. flow_recall_rank = flow_recall_rank[top_K:]
  609. # 按概率 p 及score排序获取 size - k 个视频
  610. flow_num = 0
  611. flowConfig = 0
  612. if exp_config and exp_config['flowConfig']:
  613. flowConfig = exp_config['flowConfig']
  614. if flowConfig == 1 and len(rov_recall_rank) > 0:
  615. for recall_item in rank_result:
  616. flow_recall_name = recall_item.get("flowPool", '')
  617. flow_num = flow_num + 1
  618. all_recall_rank = rov_recall_rank + flow_recall_rank
  619. if flow_num > 0:
  620. rank_result.extend(all_recall_rank[:size - top_K])
  621. return rank_result, flow_num
  622. else:
  623. i = 0
  624. while i < size - top_K:
  625. # 随机生成[0, 1)浮点数
  626. rand = random.random()
  627. # log_.info('rand: {}'.format(rand))
  628. if rand < flow_pool_P:
  629. if flow_recall_rank:
  630. rank_result.append(flow_recall_rank[0])
  631. flow_recall_rank.remove(flow_recall_rank[0])
  632. else:
  633. rank_result.extend(rov_recall_rank[:size - top_K - i])
  634. return rank_result[:size], flow_num
  635. else:
  636. if rov_recall_rank:
  637. rank_result.append(rov_recall_rank[0])
  638. rov_recall_rank.remove(rov_recall_rank[0])
  639. else:
  640. rank_result.extend(flow_recall_rank[:size - top_K - i])
  641. return rank_result[:size], flow_num
  642. i += 1
  643. else:
  644. i = 0
  645. while i < size - top_K:
  646. # 随机生成[0, 1)浮点数
  647. rand = random.random()
  648. # log_.info('rand: {}'.format(rand))
  649. if rand < flow_pool_P:
  650. if flow_recall_rank:
  651. rank_result.append(flow_recall_rank[0])
  652. flow_recall_rank.remove(flow_recall_rank[0])
  653. else:
  654. rank_result.extend(rov_recall_rank[:size - top_K - i])
  655. return rank_result[:size], flow_num
  656. else:
  657. if rov_recall_rank:
  658. rank_result.append(rov_recall_rank[0])
  659. rov_recall_rank.remove(rov_recall_rank[0])
  660. else:
  661. rank_result.extend(flow_recall_rank[:size - top_K - i])
  662. return rank_result[:size], flow_num
  663. i += 1
  664. return rank_result[:size], flow_num
  665. def video_sanke_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  666. """
  667. 视频分发排序
  668. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  669. :param size: 请求数
  670. :param top_K: 保证topK为召回池视频 type-int
  671. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  672. :return: rank_result
  673. """
  674. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  675. and not data['hot_rcall'] and not data['hot_rcall']:
  676. return [], 0
  677. # 地域分组小时级规则更新数据
  678. recall_dict = {}
  679. region_h_recall = [item for item in data['rov_pool_recall']
  680. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  681. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  682. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  683. # 地域分组小时级更新24h规则更新数据
  684. region_24h_recall = [item for item in data['rov_pool_recall']
  685. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  686. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  687. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  688. # 相对24h规则更新数据
  689. rule_24h_recall = [item for item in data['rov_pool_recall']
  690. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  691. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  692. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  693. # 相对24h规则筛选后剩余更新数据
  694. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  695. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  696. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  697. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  698. hot_recall = []
  699. w2v_recall =[]
  700. sim_recall = []
  701. if ab_Code==60058:
  702. if len(data['hot_recall'])>0:
  703. hot_recall = sorted(data['hot_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  704. recall_dict['hot_recall'] = hot_recall
  705. elif ab_Code==60059:
  706. if len(data['w2v_recall'])>0:
  707. recall_dict['w2v_recall'] = data['w2v_recall']
  708. else:
  709. recall_dict['w2v_recall'] = w2v_recall
  710. elif ab_Code==60061:
  711. if len(data['sim_recall'])>0:
  712. recall_dict['sim_recall'] = data['sim_recall']
  713. else:
  714. recall_dict['sim_recall'] = sim_recall
  715. recall_list = [('rov_recall_region_h',1, 1),('rov_recall_region_h',0.5, 1),('rov_recall_region_24h',1,1),
  716. ('hot_recall',0.5,1), ('w2v_recall',0.5,1),('rov_recall_24h',1,1), ('rov_recall_24h_dup',0.5,1)]
  717. if exp_config and exp_config['recall_list']:
  718. recall_list = exp_config['recall_list']
  719. #print("recall_config:", recall_list)
  720. rov_recall_rank = []
  721. select_ids = set('')
  722. for i in range(3):
  723. if len(rov_recall_rank)>8:
  724. break
  725. for per_recall_item in recall_list:
  726. per_recall_name = per_recall_item[0]
  727. per_recall_freq = per_recall_item[1]
  728. per_limt_num = per_recall_item[2]
  729. rand_num = random.random()
  730. #print(recall_dict[per_recall_name])
  731. if rand_num<per_recall_freq and per_recall_name in recall_dict:
  732. per_recall = recall_dict[per_recall_name]
  733. #print("per_recall_item:", per_recall_item)
  734. cur_recall_num = 0
  735. for recall_item in per_recall:
  736. vid = recall_item['videoId']
  737. if vid in select_ids:
  738. continue
  739. rov_recall_rank.append(recall_item)
  740. select_ids.add(vid)
  741. cur_recall_num+=1
  742. if cur_recall_num>=per_limt_num:
  743. break
  744. # print("rov_recall_rank:")
  745. # print(rov_recall_rank)
  746. #rov_recall_rank = region_h_recall_rank + region_24h_recall_rank + \
  747. # rule_24h_recall_rank + rule_24h_dup_recall_rank
  748. # 流量池
  749. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  750. # 对各路召回的视频进行去重
  751. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  752. top_K=top_K)
  753. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  754. # rov_recall_rank, flow_recall_rank))
  755. # rank_result = relevant_recall_rank
  756. rank_result = []
  757. # 从ROV召回池中获取top k
  758. if len(rov_recall_rank) > 0:
  759. rank_result.extend(rov_recall_rank[:top_K])
  760. rov_recall_rank = rov_recall_rank[top_K:]
  761. else:
  762. rank_result.extend(flow_recall_rank[:top_K])
  763. flow_recall_rank = flow_recall_rank[top_K:]
  764. flow_num = 0
  765. flowConfig =0
  766. if exp_config and exp_config['flowConfig']:
  767. flowConfig = exp_config['flowConfig']
  768. if flowConfig == 1 and len(rov_recall_rank) > 0:
  769. rank_result.extend(rov_recall_rank[:top_K])
  770. for recall_item in rank_result:
  771. flow_recall_name = recall_item.get("flowPool", '')
  772. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  773. flow_num = flow_num + 1
  774. all_recall_rank = rov_recall_rank + flow_recall_rank
  775. if flow_num > 0:
  776. rank_result.extend(all_recall_rank[:size - top_K])
  777. return rank_result[:size], flow_num
  778. else:
  779. # 按概率 p 及score排序获取 size - k 个视频
  780. i = 0
  781. while i < size - top_K:
  782. # 随机生成[0, 1)浮点数
  783. rand = random.random()
  784. # log_.info('rand: {}'.format(rand))
  785. if rand < flow_pool_P:
  786. if flow_recall_rank:
  787. rank_result.append(flow_recall_rank[0])
  788. flow_recall_rank.remove(flow_recall_rank[0])
  789. else:
  790. rank_result.extend(rov_recall_rank[:size - top_K - i])
  791. return rank_result[:size], flow_num
  792. else:
  793. if rov_recall_rank:
  794. rank_result.append(rov_recall_rank[0])
  795. rov_recall_rank.remove(rov_recall_rank[0])
  796. else:
  797. rank_result.extend(flow_recall_rank[:size - top_K - i])
  798. return rank_result[:size], flow_num
  799. i += 1
  800. else:
  801. # 按概率 p 及score排序获取 size - k 个视频
  802. i = 0
  803. while i < size - top_K:
  804. # 随机生成[0, 1)浮点数
  805. rand = random.random()
  806. # log_.info('rand: {}'.format(rand))
  807. if rand < flow_pool_P:
  808. if flow_recall_rank:
  809. rank_result.append(flow_recall_rank[0])
  810. flow_recall_rank.remove(flow_recall_rank[0])
  811. else:
  812. rank_result.extend(rov_recall_rank[:size - top_K - i])
  813. return rank_result[:size], flow_num
  814. else:
  815. if rov_recall_rank:
  816. rank_result.append(rov_recall_rank[0])
  817. rov_recall_rank.remove(rov_recall_rank[0])
  818. else:
  819. rank_result.extend(flow_recall_rank[:size - top_K - i])
  820. return rank_result[:size],flow_num
  821. i += 1
  822. return rank_result[:size], flow_num
  823. if __name__ == '__main__':
  824. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  825. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  826. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  827. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  828. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  829. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  830. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  831. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  832. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  833. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  834. res = video_rank_by_w_h_rate(videos=d_test)
  835. for tmp in res:
  836. print(tmp)