video_rank.py 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318
  1. import copy
  2. import json
  3. import random
  4. import numpy
  5. from log import Log
  6. from config import set_config
  7. from video_recall import PoolRecall
  8. from db_helper import RedisHelper
  9. from utils import FilterVideos, send_msg_to_feishu
  10. from rank_service import get_featurs, get_tf_serving_sores
  11. log_ = Log()
  12. config_ = set_config()
  13. def video_rank(data, size, top_K, flow_pool_P, flow_pool_recall_process=None):
  14. """
  15. 视频分发排序
  16. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  17. :param size: 请求数
  18. :param top_K: 保证topK为召回池视频 type-int
  19. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  20. :return: rank_result
  21. """
  22. # add_flow_pool_recall_log
  23. if flow_pool_recall_process is None:
  24. flow_pool_recall_process = {}
  25. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  26. # add_flow_pool_recall_log
  27. return [], flow_pool_recall_process
  28. # return []
  29. # 将各路召回的视频按照score从大到小排序
  30. # 最惊奇相关推荐相似视频
  31. # relevant_recall = [item for item in data['rov_pool_recall']
  32. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  33. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  34. # 最惊奇完整影视视频
  35. # whole_movies_recall = [item for item in data['rov_pool_recall']
  36. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  37. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  38. # 最惊奇影视解说视频
  39. # talk_videos_recall = [item for item in data['rov_pool_recall']
  40. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  41. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  42. # 小时级更新数据
  43. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  44. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  45. # 相对30天天级规则更新数据
  46. day_30_recall = [item for item in data['rov_pool_recall']
  47. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  48. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  49. # 地域分组小时级规则更新数据
  50. region_h_recall = [item for item in data['rov_pool_recall']
  51. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  52. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  53. # 地域分组小时级更新24h规则更新数据
  54. region_24h_recall = [item for item in data['rov_pool_recall']
  55. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  56. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  57. # 地域分组天级规则更新数据
  58. # region_day_recall = [item for item in data['rov_pool_recall']
  59. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  60. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  61. # 相对24h规则更新数据
  62. rule_24h_recall = [item for item in data['rov_pool_recall']
  63. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  64. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  65. # 相对24h规则筛选后剩余更新数据
  66. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  67. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  68. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  69. # 相对48h规则更新数据
  70. rule_48h_recall = [item for item in data['rov_pool_recall']
  71. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  72. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  73. # 相对48h规则筛选后剩余更新数据
  74. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  75. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  76. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  77. # 天级规则更新数据
  78. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  79. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  80. # ROV召回池
  81. # rov_initial_recall = [
  82. # item for item in data['rov_pool_recall']
  83. # if item.get('pushFrom') not in
  84. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  85. # config_.PUSH_FROM['rov_recall_h'],
  86. # config_.PUSH_FROM['rov_recall_region_h'],
  87. # config_.PUSH_FROM['rov_recall_region_24h'],
  88. # config_.PUSH_FROM['rov_recall_region_day'],
  89. # config_.PUSH_FROM['rov_recall_24h'],
  90. # config_.PUSH_FROM['rov_recall_24h_dup'],
  91. # config_.PUSH_FROM['rov_recall_48h'],
  92. # config_.PUSH_FROM['rov_recall_48h_dup'],
  93. # config_.PUSH_FROM['rov_recall_day'],
  94. # config_.PUSH_FROM['whole_movies'],
  95. # config_.PUSH_FROM['talk_videos']]
  96. # ]
  97. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  98. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  99. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  100. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  101. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  102. # day_recall_rank + rov_initial_recall_rank
  103. rov_recall_rank = day_30_recall_rank + \
  104. region_h_recall_rank + region_24h_recall_rank + \
  105. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  106. rule_48h_recall_rank + rule_48h_dup_recall_rank
  107. # 流量池
  108. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  109. # 对各路召回的视频进行去重
  110. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  111. top_K=top_K)
  112. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  113. # rov_recall_rank, flow_recall_rank))
  114. # rank_result = relevant_recall_rank
  115. rank_result = []
  116. # add_flow_pool_recall_log
  117. flow_pool_recall_process['recall_duplicate_res'] = {'rov_recall_rank': rov_recall_rank,
  118. 'flow_recall_rank': copy.deepcopy(flow_recall_rank)}
  119. # 从ROV召回池中获取top k
  120. if len(rov_recall_rank) > 0:
  121. rank_result.extend(rov_recall_rank[:top_K])
  122. rov_recall_rank = rov_recall_rank[top_K:]
  123. else:
  124. rank_result.extend(flow_recall_rank[:top_K])
  125. flow_recall_rank = flow_recall_rank[top_K:]
  126. # 按概率 p 及score排序获取 size - k 个视频
  127. i = 0
  128. while i < size - top_K:
  129. # 随机生成[0, 1)浮点数
  130. rand = random.random()
  131. # add_flow_pool_recall_log
  132. flow_pool_recall_process['flow_pool_P'] = flow_pool_P
  133. flow_pool_recall_process[f'{i}_rand'] = rand
  134. # log_.info('rand: {}'.format(rand))
  135. if rand < flow_pool_P:
  136. if flow_recall_rank:
  137. rank_result.append(flow_recall_rank[0])
  138. flow_recall_rank.remove(flow_recall_rank[0])
  139. else:
  140. rank_result.extend(rov_recall_rank[:size - top_K - i])
  141. return rank_result[:size], flow_pool_recall_process
  142. else:
  143. if rov_recall_rank:
  144. rank_result.append(rov_recall_rank[0])
  145. rov_recall_rank.remove(rov_recall_rank[0])
  146. else:
  147. rank_result.extend(flow_recall_rank[:size - top_K - i])
  148. return rank_result[:size], flow_pool_recall_process
  149. i += 1
  150. return rank_result[:size], flow_pool_recall_process
  151. def video_new_rank(videoIds, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  152. """
  153. 视频分发排序
  154. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  155. :param size: 请求数
  156. :param top_K: 保证topK为召回池视频 type-int
  157. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  158. :return: rank_result
  159. """
  160. add_flow_set = set('')
  161. if not videoIds or len(videoIds)==0:
  162. return [], add_flow_set
  163. redisObj = RedisHelper()
  164. vidKeys = []
  165. for vid in videoIds:
  166. vidKeys.append("k_p:"+str(vid))
  167. #print("vidKeys:", vidKeys)
  168. video_scores = redisObj.get_batch_key(vidKeys)
  169. #print(video_scores)
  170. video_items = []
  171. for i in range(len(video_scores)):
  172. try:
  173. #print(video_scores[i])
  174. if video_scores[i] is None:
  175. video_items.append((videoIds[i], 0.0))
  176. else:
  177. video_score_str = json.loads(video_scores[i])
  178. #print("video_score_str:",video_score_str)
  179. video_items.append((videoIds[i], video_score_str[0]))
  180. except Exception:
  181. video_items.append((videoIds[i], 0.0))
  182. sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  183. #print("sort_items:", sort_items)
  184. rov_recall_rank = sort_items
  185. fast_flow_recall_rank = []
  186. flow_recall_rank = []
  187. for item in sort_items:
  188. if item[0] in fast_flow_set:
  189. fast_flow_recall_rank.append(item)
  190. elif item[0] in flow_set:
  191. flow_recall_rank.append(item)
  192. # all flow result
  193. all_flow_recall_rank = fast_flow_recall_rank+flow_recall_rank
  194. rank_result = []
  195. rank_set = set('')
  196. # 从ROV召回池中获取top k
  197. if len(rov_recall_rank) > 0:
  198. rank_result.extend(rov_recall_rank[:top_K])
  199. rov_recall_rank = rov_recall_rank[top_K:]
  200. else:
  201. rank_result.extend(all_flow_recall_rank[:top_K])
  202. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  203. for rank_item in rank_result:
  204. rank_set.add(rank_item[0])
  205. #print("rank_result:", rank_result)
  206. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  207. i = 0
  208. left_quato = size - top_K
  209. j = 0
  210. jj = 0
  211. while i < left_quato and (j<len(all_flow_recall_rank) or jj<len(rov_recall_rank)):
  212. # 随机生成[0, 1)浮点数
  213. rand = random.random()
  214. # log_.info('rand: {}'.format(rand))
  215. if rand < flow_pool_P:
  216. for flow_item in all_flow_recall_rank:
  217. j+=1
  218. if flow_item[0] in rank_set:
  219. continue
  220. else:
  221. rank_result.append(flow_item)
  222. rank_set.add(flow_item[0])
  223. add_flow_set.add(flow_item[0])
  224. i += 1
  225. if i>= left_quato:
  226. break
  227. else:
  228. for recall_item in rov_recall_rank:
  229. jj+=1
  230. if recall_item[0] in rank_set:
  231. continue
  232. else:
  233. rank_result.append(recall_item)
  234. rank_set.add(recall_item[0])
  235. i += 1
  236. if i>= left_quato:
  237. break
  238. #print("rank_result:", rank_result)
  239. #print("add_flow_set:", add_flow_set)
  240. return rank_result[:size], add_flow_set
  241. def refactor_video_rank(rov_recall_rank, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  242. """
  243. 视频分发排序
  244. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  245. :param size: 请求数
  246. :param top_K: 保证topK为召回池视频 type-int
  247. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  248. :return: rank_result
  249. """
  250. if not rov_recall_rank or len(rov_recall_rank) == 0:
  251. return []
  252. fast_flow_recall_rank = []
  253. flow_recall_rank = []
  254. for item in rov_recall_rank:
  255. vid = item.get('videoId', 0)
  256. #print(item)
  257. if vid in fast_flow_set:
  258. fast_flow_recall_rank.append(item)
  259. elif vid in flow_set:
  260. flow_recall_rank.append(item)
  261. # all flow result
  262. all_flow_recall_rank = fast_flow_recall_rank + flow_recall_rank
  263. rank_result = []
  264. rank_set = set('')
  265. # 从ROV召回池中获取top k
  266. if len(rov_recall_rank) > 0:
  267. rank_result.extend(rov_recall_rank[:top_K])
  268. rov_recall_rank = rov_recall_rank[top_K:]
  269. else:
  270. rank_result.extend(all_flow_recall_rank[:top_K])
  271. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  272. #已存放了多少VID
  273. for rank_item in rank_result:
  274. rank_set.add(rank_item.get('videoId', 0))
  275. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  276. i = 0
  277. while i < size - top_K:
  278. # 随机生成[0, 1)浮点数
  279. rand = random.random()
  280. # log_.info('rand: {}'.format(rand))
  281. if rand < flow_pool_P:
  282. for flow_item in all_flow_recall_rank:
  283. flow_vid = flow_item.get('videoId', 0)
  284. if flow_vid in rank_set:
  285. continue
  286. else:
  287. rank_result.append(flow_item)
  288. rank_set.add(flow_vid)
  289. else:
  290. for recall_item in rov_recall_rank:
  291. flow_vid = recall_item.get('videoId', 0)
  292. if flow_vid in rank_set:
  293. continue
  294. else:
  295. rank_result.append(recall_item)
  296. rank_set.add(flow_vid)
  297. i += 1
  298. return rank_result[:size]
  299. def remove_duplicate(rov_recall, flow_recall, top_K):
  300. """
  301. 对多路召回的视频去重
  302. 去重原则:
  303. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  304. :param rov_recall: ROV召回池-已排序
  305. :param flow_recall: 流量池-已排序
  306. :param top_K: 保证topK为召回池视频 type-int
  307. :return:
  308. """
  309. flow_recall_result = []
  310. rov_recall_remove = []
  311. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  312. # rov_recall topK
  313. for item in rov_recall[:top_K]:
  314. if item['videoId'] in flow_recall_video_ids:
  315. flow_recall_video_ids.remove(item['videoId'])
  316. # other
  317. for item in rov_recall[top_K:]:
  318. if item['videoId'] in flow_recall_video_ids:
  319. rov_recall_remove.append(item)
  320. # rov recall remove
  321. for item in rov_recall_remove:
  322. rov_recall.remove(item)
  323. # flow recall remove
  324. for item in flow_recall:
  325. if item['videoId'] in flow_recall_video_ids:
  326. flow_recall_result.append(item)
  327. return rov_recall, flow_recall_result
  328. def bottom_strategy(request_id, size, app_type, ab_code, params):
  329. """
  330. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  331. :param request_id: request_id
  332. :param size: 需要获取的视频数
  333. :param app_type: 产品标识 type-int
  334. :param ab_code: abCode
  335. :param params:
  336. :return:
  337. """
  338. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  339. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  340. redis_helper = RedisHelper(params=params)
  341. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  342. if not data:
  343. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  344. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  345. # 二次兜底
  346. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  347. return bottom_data
  348. # 视频状态过滤采用离线定时过滤方案
  349. # 状态过滤
  350. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  351. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  352. if len(data) > size:
  353. random_data = numpy.random.choice(data, size, False)
  354. else:
  355. random_data = data
  356. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  357. for item in random_data]
  358. return bottom_data
  359. def bottom_strategy_last(size, app_type, ab_code, params):
  360. """
  361. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  362. :param size: 需要获取的视频数
  363. :param app_type: 产品标识 type-int
  364. :param ab_code: abCode
  365. :param params:
  366. :return:
  367. """
  368. redis_helper = RedisHelper(params=params)
  369. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  370. random_data = numpy.random.choice(bottom_data, size * 30, False)
  371. # 视频状态过滤采用离线定时过滤方案
  372. # 状态过滤
  373. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  374. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  375. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  376. for video_id in random_data[:size]]
  377. return bottom_data
  378. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  379. """
  380. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  381. :param size: 需要获取的视频数
  382. :param app_type: 产品标识 type-int
  383. :param mid: mid
  384. :param uid: uid
  385. :param ab_code: abCode
  386. :param client_info: 地域信息
  387. :param params:
  388. :return:
  389. """
  390. # 获取存在城市分组数据的城市编码列表
  391. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  392. # 获取provinceCode
  393. province_code = client_info.get('provinceCode', '-1')
  394. # 获取cityCode
  395. city_code = client_info.get('cityCode', '-1')
  396. if city_code in city_code_list:
  397. # 分城市数据存在时,获取城市分组数据
  398. region_code = city_code
  399. else:
  400. region_code = province_code
  401. if region_code == '':
  402. region_code = '-1'
  403. redis_helper = RedisHelper(params=params)
  404. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  405. bottom_result = []
  406. if bottom_data is None:
  407. return bottom_result
  408. if len(bottom_data) > 0:
  409. try:
  410. random_data = numpy.random.choice(bottom_data, size * 5, False)
  411. except Exception as e:
  412. random_data = bottom_data
  413. video_ids = [int(item) for item in random_data]
  414. # 过滤
  415. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  416. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  417. if filtered_data:
  418. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  419. for video_id in filtered_data[:size]]
  420. return bottom_result
  421. def video_rank_by_w_h_rate(videos):
  422. """
  423. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  424. :param videos:
  425. :return:
  426. """
  427. redis_helper = RedisHelper()
  428. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  429. top_2_push_from_flag = [False, False]
  430. for i, video in enumerate(videos[:2]):
  431. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  432. top_2_push_from_flag[i] = True
  433. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  434. return videos
  435. # ##### 判断前两个视频是否为横屏
  436. top_2_w_h_rate_flag = [False, False]
  437. for i, video in enumerate(videos[:2]):
  438. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  439. # 视频来源为置顶 或 流量池时,不做判断
  440. top_2_w_h_rate_flag[i] = True
  441. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  442. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  443. w_h_rate = redis_helper.get_score_with_value(
  444. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  445. if w_h_rate is not None:
  446. top_2_w_h_rate_flag[i] = True
  447. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  448. # 视频来源为 二层兜底时,判断是否是横屏
  449. w_h_rate = redis_helper.get_score_with_value(
  450. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  451. if w_h_rate is not None:
  452. top_2_w_h_rate_flag[i] = True
  453. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  454. return videos
  455. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  456. # 记录横屏视频位置
  457. horizontal_video_index = []
  458. # 记录流量池视频位置
  459. flow_video_index = []
  460. # 记录置顶视频位置
  461. top_video_index = []
  462. for i, video in enumerate(videos):
  463. # 视频来源为置顶
  464. if video['pushFrom'] == config_.PUSH_FROM['top']:
  465. top_video_index.append(i)
  466. # 视频来源为流量池
  467. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  468. flow_video_index.append(i)
  469. # 视频来源为rov召回池 或 一层兜底
  470. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  471. w_h_rate = redis_helper.get_score_with_value(
  472. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  473. if w_h_rate is not None:
  474. horizontal_video_index.append(i)
  475. else:
  476. continue
  477. # 视频来源为 二层兜底
  478. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  479. w_h_rate = redis_helper.get_score_with_value(
  480. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  481. if w_h_rate is not None:
  482. horizontal_video_index.append(i)
  483. else:
  484. continue
  485. # 重新排序
  486. top2_index = []
  487. for i in range(2):
  488. if i in top_video_index:
  489. top2_index.append(i)
  490. elif i in flow_video_index:
  491. top2_index.append(i)
  492. flow_video_index.remove(i)
  493. elif i in horizontal_video_index:
  494. top2_index.append(i)
  495. horizontal_video_index.remove(i)
  496. elif len(horizontal_video_index) > 0:
  497. # 调整横屏视频到第一位
  498. top2_index.append(horizontal_video_index[0])
  499. # 从横屏位置记录中移除
  500. horizontal_video_index.pop(0)
  501. elif i == 0:
  502. return videos
  503. # 重排
  504. flow_result = [videos[i] for i in flow_video_index]
  505. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  506. top2_result = []
  507. for i, j in enumerate(top2_index):
  508. item = videos[j]
  509. if i != j:
  510. # 修改abCode
  511. item['abCode'] = config_.AB_CODE['w_h_rate']
  512. top2_result.append(item)
  513. new_rank_result = top2_result
  514. for i in range(len(top2_index), len(videos)):
  515. if i in flow_video_index:
  516. new_rank_result.append(flow_result[0])
  517. flow_result.pop(0)
  518. else:
  519. new_rank_result.append(other_result[0])
  520. other_result.pop(0)
  521. return new_rank_result
  522. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  523. """
  524. 视频分发排序 - 包含老视频, 老视频插入固定位置
  525. :param rank_result: 排序后的结果
  526. :param size: 请求数
  527. :param old_video_index: 老视频插入的位置索引,默认为2
  528. :return: new_rank_result
  529. """
  530. if not old_video_recall:
  531. return rank_result
  532. if not rank_result:
  533. return old_video_recall[:size]
  534. # 视频去重
  535. rank_video_ids = [item['videoId'] for item in rank_result]
  536. old_video_remove = []
  537. for old_video in old_video_recall:
  538. if old_video['videoId'] in rank_video_ids:
  539. old_video_remove.append(old_video)
  540. for item in old_video_remove:
  541. old_video_recall.remove(item)
  542. if not old_video_recall:
  543. return rank_result
  544. # 插入老视频
  545. # 随机获取一个视频
  546. ind = random.randint(0, len(old_video_recall) - 1)
  547. old_video = old_video_recall[ind]
  548. # 插入
  549. if len(rank_result) < top_K:
  550. new_rank_result = rank_result + [old_video]
  551. else:
  552. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  553. if len(new_rank_result) > size:
  554. # 判断后两位视频来源
  555. push_from_1 = new_rank_result[-1]['pushFrom']
  556. push_from_2 = new_rank_result[-2]['pushFrom']
  557. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  558. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  559. return new_rank_result[:size]
  560. def video_new_rank2(data, size, top_K, flow_pool_P, ab_code, mid, exp_config=None, env_dict=None):
  561. """
  562. 视频分发排序
  563. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  564. :param size: 请求数
  565. :param top_K: 保证topK为召回池视频 type-int
  566. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  567. :return: rank_result
  568. """
  569. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  570. return [], 0
  571. #全量的是vlog,票圈精选, 334,60057,
  572. # 60054: simrecall,
  573. pre_str = "k_p2:"
  574. rov_recall_rank = data['rov_pool_recall']
  575. #print(rov_recall_rank)
  576. #call rank service
  577. #flag_call_service = 0
  578. sort_index = 0
  579. if exp_config and "sort_flag" in exp_config:
  580. sort_index = exp_config["sort_flag"]
  581. #print("sort_index:", sort_index)
  582. redisObj = RedisHelper()
  583. vidKeys = []
  584. rec_recall_item_list = []
  585. rec_recall_vid_list = []
  586. day_vidKeys = []
  587. hour_vidKeys = []
  588. pre_day_str = "v_ctr:"
  589. pre_hour_str = "v_hour_ctr:"
  590. for recall_item in data['rov_pool_recall']:
  591. try:
  592. vid = int(recall_item.get("videoId", 0))
  593. rec_recall_vid_list.append(vid)
  594. rec_recall_item_list.append(recall_item)
  595. vidKeys.append(pre_str + str(vid))
  596. day_vidKeys.append(pre_day_str+str(vid))
  597. hour_vidKeys.append(pre_hour_str+str(vid))
  598. except:
  599. continue
  600. video_scores = redisObj.get_batch_key(vidKeys)
  601. #print("video_scores:", video_scores)
  602. if (ab_code == 60066 or ab_code == 60069 or ab_code == 60070 or ab_code == 60071) and len(rec_recall_vid_list)>0:
  603. video_static_info = redisObj.get_batch_key(day_vidKeys)
  604. video_hour_static_info = redisObj.get_batch_key(hour_vidKeys)
  605. #print("env_dict:", env_dict)
  606. feature_dict = get_featurs(mid, data, size, top_K, flow_pool_P, rec_recall_vid_list,env_dict, video_static_info, video_hour_static_info)
  607. score_result = get_tf_serving_sores(feature_dict)
  608. #print("score_result:", score_result)
  609. if video_scores and len(video_scores)>0 and rec_recall_item_list and score_result and len(score_result) > 0\
  610. and len(score_result) == len(rec_recall_item_list) and len(video_scores)== len(score_result):
  611. for i in range(len(score_result)):
  612. try:
  613. if video_scores[i] is None and len(score_result[i])>0:
  614. return_score = 0.000000001
  615. # sore_index :10 = model score
  616. if sort_index == 10:
  617. total_score = score_result[i][0]
  618. else:
  619. total_score = return_score * score_result[i][0]
  620. rec_recall_item_list[i]['sort_score'] = total_score
  621. rec_recall_item_list[i]['base_rov_score'] = 0.0
  622. rec_recall_item_list[i]['share_score'] = return_score
  623. rec_recall_item_list[i]['model_score'] = score_result[i][0]
  624. else:
  625. video_score_str = json.loads(video_scores[i])
  626. # sore_index :10 = model score
  627. return_score = 0.000000001
  628. if sort_index == 10:
  629. total_score = score_result[i][0]
  630. else:
  631. if len(video_score_str)>= sort_index and len(video_score_str)>0:
  632. return_score = video_score_str[sort_index]
  633. total_score = return_score * score_result[i][0]
  634. #print("total_score:", total_score, " model score :", score_result[i][0], "return_score:",
  635. # return_score)
  636. rec_recall_item_list[i]['sort_score'] = total_score
  637. rec_recall_item_list[i]['base_rov_score'] = video_score_str[0]
  638. rec_recall_item_list[i]['share_score'] = return_score
  639. rec_recall_item_list[i]['model_score'] = score_result[i][0]
  640. except Exception as e:
  641. #print('exception: {}:', e)
  642. return_score = 0.000000001
  643. if sort_index == 10:
  644. total_score = 0.00000001
  645. else:
  646. total_score = return_score * 0.00000001
  647. rec_recall_item_list[i]['sort_score'] = total_score
  648. rec_recall_item_list[i]['base_rov_score'] = 0
  649. rec_recall_item_list[i]['share_score'] = return_score
  650. rec_recall_item_list[i]['model_score'] = 0.00000001
  651. rec_recall_item_list[i]['flag_call_service'] = 1
  652. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  653. else:
  654. rov_recall_rank = sup_rank(video_scores, rec_recall_item_list)
  655. else:
  656. if video_scores and len(rec_recall_item_list) > 0 and len(video_scores)>0:
  657. for i in range(len(video_scores)):
  658. try:
  659. if video_scores[i] is None:
  660. rec_recall_item_list[i]['sort_score'] = 0.0
  661. else:
  662. video_score_str = json.loads(video_scores[i])
  663. # print("video_score_str:", video_score_str)
  664. rec_recall_item_list[i]['sort_score'] = video_score_str[0]
  665. except Exception:
  666. rec_recall_item_list[i]['sort_score'] = 0.0
  667. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  668. #print(rov_recall_rank)
  669. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  670. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  671. top_K=top_K)
  672. rank_result = []
  673. rank_set = set('')
  674. # 从ROV召回池中获取top k
  675. if len(rov_recall_rank) > 0:
  676. rank_result.extend(rov_recall_rank[:top_K])
  677. rov_recall_rank = rov_recall_rank[top_K:]
  678. else:
  679. rank_result.extend(flow_recall_rank[:top_K])
  680. flow_recall_rank = flow_recall_rank[top_K:]
  681. # 按概率 p 及score排序获取 size - k 个视频
  682. flow_num = 0
  683. flowConfig = 0
  684. # 本段代码控制流量池,通过实验传参,现不动
  685. if flowConfig == 1 and len(rov_recall_rank) > 0:
  686. for recall_item in rank_result:
  687. flow_recall_name = recall_item.get("flowPool", '')
  688. flow_num = flow_num + 1
  689. all_recall_rank = rov_recall_rank + flow_recall_rank
  690. if flow_num > 0:
  691. rank_result.extend(all_recall_rank[:size - top_K])
  692. return rank_result, flow_num
  693. else:
  694. i = 0
  695. while i < size - top_K:
  696. # 随机生成[0, 1)浮点数
  697. rand = random.random()
  698. # log_.info('rand: {}'.format(rand))
  699. if rand < flow_pool_P:
  700. if flow_recall_rank:
  701. rank_result.append(flow_recall_rank[0])
  702. flow_recall_rank.remove(flow_recall_rank[0])
  703. else:
  704. rank_result.extend(rov_recall_rank[:size - top_K - i])
  705. return rank_result[:size], flow_num
  706. else:
  707. if rov_recall_rank:
  708. rank_result.append(rov_recall_rank[0])
  709. rov_recall_rank.remove(rov_recall_rank[0])
  710. else:
  711. rank_result.extend(flow_recall_rank[:size - top_K - i])
  712. return rank_result[:size], flow_num
  713. i += 1
  714. else:
  715. i = 0
  716. while i < size - top_K:
  717. # 随机生成[0, 1)浮点数
  718. rand = random.random()
  719. # log_.info('rand: {}'.format(rand))
  720. if rand < flow_pool_P:
  721. if flow_recall_rank:
  722. rank_result.append(flow_recall_rank[0])
  723. flow_recall_rank.remove(flow_recall_rank[0])
  724. else:
  725. rank_result.extend(rov_recall_rank[:size - top_K - i])
  726. return rank_result[:size], flow_num
  727. else:
  728. if rov_recall_rank:
  729. rank_result.append(rov_recall_rank[0])
  730. rov_recall_rank.remove(rov_recall_rank[0])
  731. else:
  732. rank_result.extend(flow_recall_rank[:size - top_K - i])
  733. return rank_result[:size], flow_num
  734. i += 1
  735. return rank_result[:size], flow_num
  736. def video_new_rank3(data, size, top_K, flow_pool_P, rank_key_prefix='rank:score1:', flow_pool_recall_process=None):
  737. """
  738. 视频分发排序
  739. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  740. :param size: 请求数
  741. :param top_K: 保证topK为召回池视频 type-int
  742. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  743. :param rank_key_prefix:
  744. :return: rank_result
  745. """
  746. redis_helper = RedisHelper()
  747. # add_flow_pool_recall_log
  748. if flow_pool_recall_process is None:
  749. flow_pool_recall_process = {}
  750. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  751. # add_flow_pool_recall_log
  752. return [], 0, flow_pool_recall_process
  753. # return [], 0
  754. rov_recall_rank = data['rov_pool_recall']
  755. vid_keys = []
  756. rec_recall_item_list = []
  757. rec_recall_vid_list = []
  758. for recall_item in data['rov_pool_recall']:
  759. try:
  760. vid = int(recall_item.get("videoId", 0))
  761. rec_recall_vid_list.append(vid)
  762. rec_recall_item_list.append(recall_item)
  763. vid_keys.append(f"{rank_key_prefix}{vid}")
  764. except:
  765. continue
  766. video_scores = redis_helper.get_batch_key(vid_keys)
  767. if video_scores and len(rec_recall_item_list) > 0 and len(rec_recall_item_list) == len(video_scores):
  768. for i in range(len(video_scores)):
  769. try:
  770. if video_scores[i] is None:
  771. rec_recall_item_list[i]['sort_score'] = 0.0
  772. else:
  773. rec_recall_item_list[i]['sort_score'] = float(video_scores[i])
  774. except Exception:
  775. rec_recall_item_list[i]['sort_score'] = 0.0
  776. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  777. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  778. rov_recall_rank, flow_recall_rank = remove_duplicate(
  779. rov_recall=rov_recall_rank, flow_recall=flow_recall_rank, top_K=top_K
  780. )
  781. rank_result = []
  782. # add_flow_pool_recall_log
  783. flow_pool_recall_process['recall_duplicate_res'] = {'rov_recall_rank': rov_recall_rank,
  784. 'flow_recall_rank': copy.deepcopy(flow_recall_rank)}
  785. # 从ROV召回池中获取top k
  786. if len(rov_recall_rank) > 0:
  787. rank_result.extend(rov_recall_rank[:top_K])
  788. rov_recall_rank = rov_recall_rank[top_K:]
  789. else:
  790. rank_result.extend(flow_recall_rank[:top_K])
  791. flow_recall_rank = flow_recall_rank[top_K:]
  792. # 按概率 p 及score排序获取 size - k 个视频
  793. flow_num = 0
  794. i = 0
  795. while i < size - top_K:
  796. # 随机生成[0, 1)浮点数
  797. rand = random.random()
  798. # add_flow_pool_recall_log
  799. flow_pool_recall_process['flow_pool_P'] = flow_pool_P
  800. flow_pool_recall_process[f'{i}_rand'] = rand
  801. # log_.info('rand: {}'.format(rand))
  802. if rand < flow_pool_P:
  803. if flow_recall_rank:
  804. rank_result.append(flow_recall_rank[0])
  805. flow_recall_rank.remove(flow_recall_rank[0])
  806. else:
  807. rank_result.extend(rov_recall_rank[:size - top_K - i])
  808. return rank_result[:size], flow_num, flow_pool_recall_process
  809. else:
  810. if rov_recall_rank:
  811. rank_result.append(rov_recall_rank[0])
  812. rov_recall_rank.remove(rov_recall_rank[0])
  813. else:
  814. rank_result.extend(flow_recall_rank[:size - top_K - i])
  815. return rank_result[:size], flow_num, flow_pool_recall_process
  816. i += 1
  817. return rank_result[:size], flow_num, flow_pool_recall_process
  818. # 排序服务兜底
  819. def sup_rank(video_scores, recall_list):
  820. if video_scores and len(recall_list) > 0:
  821. for i in range(len(video_scores)):
  822. try:
  823. if video_scores[i] is None:
  824. recall_list[i]['sort_score'] = 0.0
  825. else:
  826. video_score_str = json.loads(video_scores[i])
  827. recall_list[i]['flag_call_service'] = 0
  828. recall_list[i]['sort_score'] = video_score_str[0]
  829. except Exception:
  830. recall_list[i]['sort_score'] = 0.0
  831. rov_recall_rank = sorted(recall_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  832. #print("rov_recall_rank:", rov_recall_rank)
  833. else:
  834. rov_recall_rank = recall_list
  835. return rov_recall_rank
  836. def video_sanke_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  837. """
  838. 视频分发排序
  839. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  840. :param size: 请求数
  841. :param top_K: 保证topK为召回池视频 type-int
  842. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  843. :return: rank_result
  844. """
  845. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  846. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  847. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  848. return [], 0
  849. # 地域分组小时级规则更新数据
  850. recall_dict = {}
  851. region_h_recall = [item for item in data['rov_pool_recall']
  852. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  853. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  854. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  855. # 地域分组小时级更新24h规则更新数据
  856. region_24h_recall = [item for item in data['rov_pool_recall']
  857. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  858. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  859. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  860. # 相对24h规则更新数据
  861. rule_24h_recall = [item for item in data['rov_pool_recall']
  862. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  863. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  864. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  865. # 相对24h规则筛选后剩余更新数据
  866. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  867. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  868. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  869. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  870. hot_recall = []
  871. w2v_recall =[]
  872. sim_recall = []
  873. u2u2i_recall = []
  874. if ab_Code==60058:
  875. if len(data['u2i_recall'])>0:
  876. hot_recall = sorted(data['u2i_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  877. recall_dict['u2i_recall'] = hot_recall
  878. elif ab_Code==60059:
  879. if len(data['w2v_recall'])>0:
  880. recall_dict['w2v_recall'] = data['w2v_recall']
  881. else:
  882. recall_dict['w2v_recall'] = w2v_recall
  883. elif ab_Code==60061 or ab_Code==60063:
  884. if len(data['sim_recall'])>0:
  885. recall_dict['sim_recall'] = data['sim_recall']
  886. else:
  887. recall_dict['sim_recall'] = sim_recall
  888. elif ab_Code==60062:
  889. if len(data['u2u2i_recall'])>0:
  890. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  891. else:
  892. recall_dict['u2u2i_recall'] = u2u2i_recall
  893. recall_list = [('rov_recall_region_h',1, 1),('rov_recall_region_h',0.5, 1),('rov_recall_region_24h',1,1),
  894. ('u2i_recall',0.5,1), ('w2v_recall',0.5,1),('rov_recall_24h',1,1), ('rov_recall_24h_dup',0.5,1)]
  895. if exp_config and exp_config['recall_list']:
  896. recall_list = exp_config['recall_list']
  897. #print("recall_config:", recall_list)
  898. rov_recall_rank = []
  899. select_ids = set('')
  900. for i in range(3):
  901. if len(rov_recall_rank)>8:
  902. break
  903. for per_recall_item in recall_list:
  904. per_recall_name = per_recall_item[0]
  905. per_recall_freq = per_recall_item[1]
  906. per_limt_num = per_recall_item[2]
  907. rand_num = random.random()
  908. #print(recall_dict[per_recall_name])
  909. if rand_num<per_recall_freq and per_recall_name in recall_dict:
  910. per_recall = recall_dict[per_recall_name]
  911. #print("per_recall_item:", per_recall_item)
  912. cur_recall_num = 0
  913. for recall_item in per_recall:
  914. vid = recall_item['videoId']
  915. if vid in select_ids:
  916. continue
  917. rov_recall_rank.append(recall_item)
  918. select_ids.add(vid)
  919. cur_recall_num+=1
  920. if cur_recall_num>=per_limt_num:
  921. break
  922. # print("rov_recall_rank:")
  923. # print(rov_recall_rank)
  924. #rov_recall_rank = region_h_recall_rank + region_24h_recall_rank + \
  925. # rule_24h_recall_rank + rule_24h_dup_recall_rank
  926. # 流量池
  927. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  928. # 对各路召回的视频进行去重
  929. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  930. top_K=top_K)
  931. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  932. # rov_recall_rank, flow_recall_rank))
  933. # rank_result = relevant_recall_rank
  934. rank_result = []
  935. # 从ROV召回池中获取top k
  936. if len(rov_recall_rank) > 0:
  937. rank_result.extend(rov_recall_rank[:top_K])
  938. rov_recall_rank = rov_recall_rank[top_K:]
  939. else:
  940. rank_result.extend(flow_recall_rank[:top_K])
  941. flow_recall_rank = flow_recall_rank[top_K:]
  942. flow_num = 0
  943. flowConfig =0
  944. if exp_config and exp_config['flowConfig']:
  945. flowConfig = exp_config['flowConfig']
  946. if flowConfig == 1 and len(rov_recall_rank) > 0:
  947. rank_result.extend(rov_recall_rank[:top_K])
  948. for recall_item in rank_result:
  949. flow_recall_name = recall_item.get("flowPool", '')
  950. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  951. flow_num = flow_num + 1
  952. all_recall_rank = rov_recall_rank + flow_recall_rank
  953. if flow_num > 0:
  954. rank_result.extend(all_recall_rank[:size - top_K])
  955. return rank_result[:size], flow_num
  956. else:
  957. # 按概率 p 及score排序获取 size - k 个视频
  958. i = 0
  959. while i < size - top_K:
  960. # 随机生成[0, 1)浮点数
  961. rand = random.random()
  962. # log_.info('rand: {}'.format(rand))
  963. if rand < flow_pool_P:
  964. if flow_recall_rank:
  965. rank_result.append(flow_recall_rank[0])
  966. flow_recall_rank.remove(flow_recall_rank[0])
  967. else:
  968. rank_result.extend(rov_recall_rank[:size - top_K - i])
  969. return rank_result[:size], flow_num
  970. else:
  971. if rov_recall_rank:
  972. rank_result.append(rov_recall_rank[0])
  973. rov_recall_rank.remove(rov_recall_rank[0])
  974. else:
  975. rank_result.extend(flow_recall_rank[:size - top_K - i])
  976. return rank_result[:size], flow_num
  977. i += 1
  978. else:
  979. # 按概率 p 及score排序获取 size - k 个视频
  980. i = 0
  981. while i < size - top_K:
  982. # 随机生成[0, 1)浮点数
  983. rand = random.random()
  984. # log_.info('rand: {}'.format(rand))
  985. if rand < flow_pool_P:
  986. if flow_recall_rank:
  987. rank_result.append(flow_recall_rank[0])
  988. flow_recall_rank.remove(flow_recall_rank[0])
  989. else:
  990. rank_result.extend(rov_recall_rank[:size - top_K - i])
  991. return rank_result[:size], flow_num
  992. else:
  993. if rov_recall_rank:
  994. rank_result.append(rov_recall_rank[0])
  995. rov_recall_rank.remove(rov_recall_rank[0])
  996. else:
  997. rank_result.extend(flow_recall_rank[:size - top_K - i])
  998. return rank_result[:size],flow_num
  999. i += 1
  1000. return rank_result[:size], flow_num
  1001. def video_sank_pos_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  1002. """
  1003. 视频分发排序
  1004. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  1005. :param size: 请求数
  1006. :param top_K: 保证topK为召回池视频 type-int
  1007. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  1008. :return: rank_result
  1009. """
  1010. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  1011. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  1012. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  1013. return [], 0
  1014. # 地域分组小时级规则更新数据
  1015. recall_dict = {}
  1016. region_h_recall = [item for item in data['rov_pool_recall']
  1017. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  1018. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  1019. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  1020. # 地域分组小时级更新24h规则更新数据
  1021. region_24h_recall = [item for item in data['rov_pool_recall']
  1022. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  1023. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  1024. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  1025. # 相对24h规则更新数据
  1026. rule_24h_recall = [item for item in data['rov_pool_recall']
  1027. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  1028. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  1029. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  1030. # 相对24h规则筛选后剩余更新数据
  1031. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  1032. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  1033. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  1034. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  1035. u2i_recall = []
  1036. u2i_play_recall = []
  1037. w2v_recall =[]
  1038. sim_recall = []
  1039. u2u2i_recall = []
  1040. return_video_recall = []
  1041. #print("")
  1042. if ab_Code==60058:
  1043. if len(data['u2i_recall'])>0:
  1044. recall_dict['u2i_recall'] = data['u2i_recall']
  1045. else:
  1046. recall_dict['u2i_recall'] = u2i_recall
  1047. if len(data['u2i_play_recall']) > 0:
  1048. recall_dict['u2i_play_recall'] = data['u2i_play_recall']
  1049. else:
  1050. recall_dict['u2i_play_recall'] = u2i_play_recall
  1051. elif ab_Code==60059:
  1052. if len(data['w2v_recall'])>0:
  1053. recall_dict['w2v_recall'] = data['w2v_recall']
  1054. else:
  1055. recall_dict['w2v_recall'] = w2v_recall
  1056. elif ab_Code==60061 or ab_Code==60063:
  1057. if len(data['sim_recall'])>0:
  1058. recall_dict['sim_recall'] = data['sim_recall']
  1059. else:
  1060. recall_dict['sim_recall'] = sim_recall
  1061. elif ab_Code==60062:
  1062. if len(data['u2u2i_recall'])>0:
  1063. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  1064. else:
  1065. recall_dict['u2u2i_recall'] = u2u2i_recall
  1066. elif ab_Code==60064:
  1067. if len(data['return_video_recall'])>0:
  1068. recall_dict['return_video_recall'] = data['return_video_recall']
  1069. else:
  1070. recall_dict['return_video_recall'] = return_video_recall
  1071. recall_pos1 = [('rov_recall_region_h',0, 0.98),('rov_recall_24h',0.98, 1),('rov_recall_region_24h',0,1),
  1072. ('rov_recall_24h',0,1), ('rov_recall_24h_dup',0,1)]
  1073. recall_pos2 = [('rov_recall_region_h',0,0.98),('rov_recall_24h',0.98,1),('rov_recall_region_24h',0,1),
  1074. ('rov_recall_24h',0,1),('rov_recall_24h_dup',0,1)]
  1075. recall_pos3 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0.98,1), ('rov_recall_region_24h', 0,1),
  1076. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  1077. recall_pos4 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0,0.02), ('rov_recall_region_24h', 0,1),
  1078. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  1079. if exp_config and 'recall_pos1' in exp_config \
  1080. and 'recall_pos2' in exp_config \
  1081. and 'recall_pos3' in exp_config \
  1082. and 'recall_pos4' in exp_config :
  1083. recall_pos1 = exp_config['recall_pos1']
  1084. recall_pos2 = exp_config['recall_pos2']
  1085. recall_pos3 = exp_config['recall_pos3']
  1086. recall_pos4 = exp_config['recall_pos4']
  1087. #print("recall_config:", recall_pos1)
  1088. rov_recall_rank = []
  1089. recall_list = []
  1090. recall_list.append(recall_pos1)
  1091. recall_list.append(recall_pos2)
  1092. recall_list.append(recall_pos3)
  1093. recall_list.append(recall_pos4)
  1094. select_ids = set('')
  1095. recall_num_limit_dict = {}
  1096. if exp_config and 'recall_num_limit' in exp_config:
  1097. recall_num_limit_dict = exp_config['recall_num_limit']
  1098. exp_recall_dict = {}
  1099. #index_pos = 0
  1100. for j in range(3):
  1101. if len(rov_recall_rank)>12:
  1102. break
  1103. # choose pos
  1104. for recall_pos_config in recall_list:
  1105. rand_num = random.random()
  1106. index_pos = 0
  1107. # choose pos recall
  1108. for per_recall_item in recall_pos_config:
  1109. if index_pos == 1:
  1110. break
  1111. if len(per_recall_item)<3:
  1112. continue
  1113. per_recall_name = per_recall_item[0]
  1114. per_recall_min = float(per_recall_item[1])
  1115. per_recall_max = float(per_recall_item[2])
  1116. per_recall_num = exp_recall_dict.get(per_recall_name, 0)
  1117. per_recall_total_num = recall_num_limit_dict.get(per_recall_name, 0)
  1118. # recall set total num
  1119. if len(recall_num_limit_dict)>0 and per_recall_total_num>0 and per_recall_num>= per_recall_total_num:
  1120. continue
  1121. if rand_num >= per_recall_min and rand_num < per_recall_max and per_recall_name in recall_dict:
  1122. per_recall = recall_dict[per_recall_name]
  1123. for recall_item in per_recall:
  1124. vid = recall_item['videoId']
  1125. if vid in select_ids:
  1126. continue
  1127. recall_item['rand'] = rand_num
  1128. rov_recall_rank.append(recall_item)
  1129. select_ids.add(vid)
  1130. if per_recall_name in exp_recall_dict:
  1131. exp_recall_dict[per_recall_name] +=1
  1132. else:
  1133. exp_recall_dict[per_recall_name] = 1
  1134. index_pos = 1
  1135. break
  1136. #print("rov_recall_rank:", rov_recall_rank)
  1137. if len(rov_recall_rank)<4:
  1138. rov_doudi_rank = region_h_recall_rank + sim_recall + u2i_recall + u2u2i_recall + w2v_recall +return_video_recall+u2i_play_recall+ region_24h_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank
  1139. for recall_item in rov_doudi_rank:
  1140. vid = recall_item['videoId']
  1141. if vid in select_ids:
  1142. continue
  1143. rov_recall_rank.append(recall_item)
  1144. select_ids.add(vid)
  1145. if len(rov_recall_rank)>12:
  1146. break
  1147. # print("rov_recall_rank:")
  1148. #print(rov_recall_rank)
  1149. # 流量池
  1150. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  1151. # 对各路召回的视频进行去重
  1152. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  1153. top_K=top_K)
  1154. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  1155. # rov_recall_rank, flow_recall_rank))
  1156. # rank_result = relevant_recall_rank
  1157. rank_result = []
  1158. # 从ROV召回池中获取top k
  1159. if len(rov_recall_rank) > 0:
  1160. rank_result.extend(rov_recall_rank[:top_K])
  1161. rov_recall_rank = rov_recall_rank[top_K:]
  1162. else:
  1163. rank_result.extend(flow_recall_rank[:top_K])
  1164. flow_recall_rank = flow_recall_rank[top_K:]
  1165. flow_num = 0
  1166. flowConfig =0
  1167. if exp_config and exp_config['flowConfig']:
  1168. flowConfig = exp_config['flowConfig']
  1169. if flowConfig == 1 and len(rov_recall_rank) > 0:
  1170. rank_result.extend(rov_recall_rank[:top_K])
  1171. for recall_item in rank_result:
  1172. flow_recall_name = recall_item.get("flowPool", '')
  1173. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  1174. flow_num = flow_num + 1
  1175. all_recall_rank = rov_recall_rank + flow_recall_rank
  1176. if flow_num > 0:
  1177. rank_result.extend(all_recall_rank[:size - top_K])
  1178. return rank_result[:size], flow_num
  1179. else:
  1180. # 按概率 p 及score排序获取 size - k 个视频
  1181. i = 0
  1182. while i < size - top_K:
  1183. # 随机生成[0, 1)浮点数
  1184. rand = random.random()
  1185. # log_.info('rand: {}'.format(rand))
  1186. if rand < flow_pool_P:
  1187. if flow_recall_rank:
  1188. rank_result.append(flow_recall_rank[0])
  1189. flow_recall_rank.remove(flow_recall_rank[0])
  1190. else:
  1191. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1192. return rank_result[:size], flow_num
  1193. else:
  1194. if rov_recall_rank:
  1195. rank_result.append(rov_recall_rank[0])
  1196. rov_recall_rank.remove(rov_recall_rank[0])
  1197. else:
  1198. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1199. return rank_result[:size], flow_num
  1200. i += 1
  1201. else:
  1202. # 按概率 p 及score排序获取 size - k 个视频
  1203. i = 0
  1204. while i < size - top_K:
  1205. # 随机生成[0, 1)浮点数
  1206. rand = random.random()
  1207. # log_.info('rand: {}'.format(rand))
  1208. if rand < flow_pool_P:
  1209. if flow_recall_rank:
  1210. rank_result.append(flow_recall_rank[0])
  1211. flow_recall_rank.remove(flow_recall_rank[0])
  1212. else:
  1213. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1214. return rank_result[:size], flow_num
  1215. else:
  1216. if rov_recall_rank:
  1217. rank_result.append(rov_recall_rank[0])
  1218. rov_recall_rank.remove(rov_recall_rank[0])
  1219. else:
  1220. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1221. return rank_result[:size],flow_num
  1222. i += 1
  1223. return rank_result[:size], flow_num
  1224. if __name__ == '__main__':
  1225. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1226. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1227. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1228. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1229. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1230. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1231. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1232. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1233. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1234. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  1235. res = video_rank_by_w_h_rate(videos=d_test)
  1236. for tmp in res:
  1237. print(tmp)