123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- import traceback
- import datetime
- from utils import RedisHelper
- from config import set_config
- from log import Log
- log_ = Log()
- config_ = set_config()
- redis_helper = RedisHelper()
- def get_params(ab_exp_info, ab_test_code):
- """
- 根据实验分组给定对应的参数
- :param ab_exp_info: AB实验组参数
- :param ab_test_code: 用户对应的ab组
- :return:
- """
- abtest_id, abtest_config_tag = None, None
- ad_abtest_id_list = [key.split('-')[0] for key in config_.AD_ABTEST_CONFIG]
- # 获取广告实验配置
- config_value_dict = {}
- if ab_exp_info:
- ab_exp_list = ab_exp_info.get('ab_test002', None)
- if ab_exp_list:
- for ab_item in ab_exp_list:
- ab_exp_code = ab_item.get('abExpCode', None)
- if not ab_exp_code:
- continue
- if ab_exp_code in ad_abtest_id_list:
- config_value = ab_item.get('configValue', None)
- if config_value:
- config_value_dict[str(ab_exp_code)] = eval(str(config_value))
- if len(config_value_dict) > 0:
- for ab_exp_code, config_value in config_value_dict.items():
- for tag, value in config_value.items():
- if ab_test_code in value:
- abtest_id = ab_exp_code
- abtest_config_tag = tag
- break
- return abtest_id, abtest_config_tag
- def get_threshold(abtest_id, abtest_config_tag, ab_test_code, mid_group, care_model_status, abtest_param):
- """获取对应的阈值"""
- # 判断是否是关怀模式实验
- care_model_status_param = abtest_param.get('care_model_status_param', None)
- care_model_ab_mid_group = abtest_param.get('care_model_ab_mid_group', None)
- if care_model_status_param is None:
- # 无关怀模式实验
- threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
- else:
- # 关怀模式实验
- if care_model_status is None or care_model_ab_mid_group is None or care_model_status == 'null':
- # 参数缺失,走默认
- threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
- elif int(care_model_status) == int(care_model_status_param) and mid_group == care_model_ab_mid_group:
- # 实验匹配,获取对应的阈值
- threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL
- else:
- threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
- threshold_key_name = f"{threshold_key_name_prefix}{abtest_id}:{abtest_config_tag}:{ab_test_code}:{mid_group}"
- threshold = redis_helper.get_data_from_redis(key_name=threshold_key_name)
- if threshold is None:
- threshold = 0
- else:
- threshold = float(threshold)
- return threshold
- def ad_recommend_predict(app_type, mid, video_id, ab_exp_info, ab_test_code, care_model_status):
- """
- 广告推荐预测
- :param app_type: app_type
- :param mid: mid
- :param video_id: video_id
- :param ab_exp_info: AB实验组参数
- :param ab_test_code: 用户对应的ab组
- :param care_model_status: 用户关怀模式状态 1-未开启,2-开启
- :return: ad_predict, type-int, 1-不发放广告,2-发放广告
- """
- try:
- now_date = datetime.datetime.today()
- now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- # 获取实验参数
- abtest_id, abtest_config_tag = get_params(ab_exp_info=ab_exp_info, ab_test_code=ab_test_code)
- if abtest_id is None or abtest_config_tag is None:
- return None
- abtest_param = config_.AD_ABTEST_CONFIG.get(f'{abtest_id}-{abtest_config_tag}')
- if abtest_param is None:
- return None
- user_data_key = abtest_param['user'].get('data')
- user_rule_key = abtest_param['user'].get('rule')
- video_data_key = abtest_param['video'].get('data')
- group_class_key = abtest_param.get('group_class_key')
- no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
- # 判断mid所属分组
- mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
- mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
- if mid_group is None:
- mid_group = 'mean_group'
- # 判断用户是否在免广告用户组列表中
- if mid_group in no_ad_mid_group_list:
- # 在免广告用户组列表中,则不出广告
- ad_predict = 1
- result = {
- 'mid_group': mid_group,
- 'ad_predict': ad_predict
- }
- else:
- # 获取用户组分享率
- group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
- if not redis_helper.key_exists(group_share_rate_key):
- redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
- group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
- # 获取视频分享率
- video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
- if not redis_helper.key_exists(video_share_rate_key):
- redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
- video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
- if video_share_rate is None:
- video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
- # 计算 mid-video 分享率
- if group_share_rate is None or video_share_rate is None:
- return None
- mid_video_share_rate = float(group_share_rate) * float(video_share_rate)
- # 获取对应的阈值
- threshold = get_threshold(
- abtest_id=abtest_id,
- abtest_config_tag=abtest_config_tag,
- ab_test_code=ab_test_code,
- mid_group=mid_group,
- care_model_status=care_model_status,
- abtest_param=abtest_param
- )
- # 阈值判断
- if mid_video_share_rate > threshold:
- # 大于阈值,出广告
- ad_predict = 2
- else:
- # 否则,不出广告
- ad_predict = 1
- result = {
- 'mid_group': mid_group,
- 'group_share_rate': group_share_rate,
- 'video_share_rate': video_share_rate,
- 'mid_video_share_rate': mid_video_share_rate,
- 'threshold': threshold,
- 'ad_predict': ad_predict}
- return result
- except Exception as e:
- log_.error(traceback.format_exc())
- return None
|