recommend.py 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime, timedelta
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_new_rank2,video_new_rank,video_rank,refactor_video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video, bottom_strategy2
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos, get_user_has30day_return
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(request_id, app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param request_id: request_id
  22. :param app_type: 产品标识 type-int
  23. :param mid: mid
  24. :param uid: uid
  25. :param head_vid: 相关推荐头部视频id type-int
  26. :param videos: 当前相关推荐结果 type-list
  27. :param size: 返回视频个数 type-int
  28. :return: rank_result
  29. """
  30. # 获取头部视频对应的相关性视频
  31. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  32. redis_helper = RedisHelper()
  33. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  34. if relevant_videos is None:
  35. # 该视频没有指定的相关性视频
  36. return videos
  37. relevant_videos = json.loads(relevant_videos)
  38. # 按照指定顺序排序
  39. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  40. # 过滤
  41. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  42. filter_helper = FilterVideos(request_id=request_id, app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  43. filtered_ids = filter_helper.filter_videos()
  44. if filtered_ids is None:
  45. return videos
  46. # 获取生效中的视频
  47. now = int(time.time())
  48. relevant_videos_in_effect = [
  49. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  50. 'abCode': config_.AB_CODE['relevant_video_op']}
  51. for item in relevant_videos_sorted
  52. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  53. ]
  54. if len(relevant_videos_in_effect) == 0:
  55. return videos
  56. # 与现有排序结果 进行合并重排
  57. # 获取现有排序结果中流量池视频 及其位置
  58. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  59. flow_pool_videos = []
  60. other_videos = []
  61. for i, item in enumerate(videos):
  62. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  63. flow_pool_videos.append((i, item))
  64. elif item.get('videoId') not in relevant_ids:
  65. other_videos.append(item)
  66. else:
  67. continue
  68. # 重排,保持流量池视频位置不变
  69. rank_result = relevant_videos_in_effect + other_videos
  70. for i, item in flow_pool_videos:
  71. rank_result.insert(i, item)
  72. return rank_result[:size]
  73. def video_position_recommend(request_id, mid, uid, app_type, videos):
  74. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  75. # algo_type=algo_type, client_info=client_info)
  76. redis_helper = RedisHelper()
  77. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  78. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  79. if pos1_vids is not None:
  80. pos1_vids = ast.literal_eval(pos1_vids)
  81. if pos2_vids is not None:
  82. pos2_vids = ast.literal_eval(pos2_vids)
  83. pos1_vids = [] if pos1_vids is None else pos1_vids
  84. pos2_vids = [] if pos2_vids is None else pos2_vids
  85. pos1_vids = [int(i) for i in pos1_vids]
  86. pos2_vids = [int(i) for i in pos2_vids]
  87. filter_1 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  88. filter_2 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  89. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  90. gevent.joinall(t)
  91. filted_list = [i.get() for i in t]
  92. pos1_vids = filted_list[0]
  93. pos2_vids = filted_list[1]
  94. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  95. if pos1_vids is not None and len(pos1_vids) >0 :
  96. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  97. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  98. if pos2_vids is not None and len(pos2_vids) >0 :
  99. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  100. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  101. return videos[:10]
  102. def positon_duplicate(pos1_vids, pos2_vids, videos):
  103. s = set()
  104. if pos1_vids is not None and len(pos1_vids) >0:
  105. s.add(int(pos1_vids[0]))
  106. if pos2_vids is not None and len(pos2_vids) >0:
  107. s.add(int(pos2_vids[0]))
  108. l = []
  109. for item in videos:
  110. if item['videoId'] in s:
  111. continue
  112. else:
  113. l.append(item)
  114. return l
  115. def video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info,
  116. expire_time=24*3600, ab_code=config_.AB_CODE['initial'], rule_key='', data_key='',
  117. no_op_flag=False, old_video_index=-1, video_id=None, params=None, rule_key_30day=None,
  118. shield_config=None):
  119. """
  120. 首页线上推荐逻辑
  121. :param request_id: request_id
  122. :param mid: mid type-string
  123. :param uid: uid type-string
  124. :param size: 请求视频数量 type-int
  125. :param top_K: 保证topK为召回池视频 type-int
  126. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  127. :param app_type: 产品标识 type-int
  128. :param algo_type: 算法类型 type-string
  129. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  130. :param expire_time: 末位视频记录redis过期时间
  131. :param ab_code: AB实验code
  132. :param video_id: 相关推荐头部视频id
  133. :param params:
  134. :return:
  135. """
  136. result = {}
  137. # ####### 多进程召回
  138. start_recall = time.time()
  139. # log_.info('====== recall')
  140. '''
  141. cores = multiprocessing.cpu_count()
  142. pool = multiprocessing.Pool(processes=cores)
  143. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  144. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  145. pool_list = [
  146. # rov召回池
  147. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  148. # 流量池
  149. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  150. ]
  151. recall_result_list = [p.get() for p in pool_list]
  152. pool.close()
  153. pool.join()
  154. '''
  155. recall_result_list = []
  156. pool_recall = PoolRecall(request_id=request_id,
  157. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  158. client_info=client_info, rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  159. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config, video_id= video_id)
  160. # _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  161. # # 小时级实验
  162. # if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()]:
  163. # t = [gevent.spawn(pool_recall.rule_recall_by_h, size, expire_time),
  164. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  165. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  166. # # 小时级实验
  167. # elif ab_code in [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  168. # t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  169. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  170. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  171. # 地域分组实验
  172. # if ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  173. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  174. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time)]
  175. else:
  176. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  177. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  178. gevent.spawn(pool_recall.flow_pool_recall, size)]
  179. # 最惊奇相关推荐实验
  180. # elif ab_code == config_.AB_CODE['top_video_relevant_appType_19']:
  181. # t = [gevent.spawn(pool_recall.relevant_recall_19, video_id, size, expire_time),
  182. # gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  183. # 最惊奇完整影视实验
  184. # elif ab_code == config_.AB_CODE['whole_movies']:
  185. # t = [gevent.spawn(pool_recall.rov_pool_recall_19, size, expire_time)]
  186. # 最惊奇/老好看实验
  187. # elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  188. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  189. # gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  190. # # 天级实验
  191. # elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  192. # t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  193. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  194. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  195. # 老视频实验
  196. # elif ab_code in [config_.AB_CODE['old_video']]:
  197. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  198. # gevent.spawn(pool_recall.flow_pool_recall, size),
  199. # gevent.spawn(pool_recall.old_videos_recall, size)]
  200. # else:
  201. # if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  202. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time)]
  203. # else:
  204. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  205. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  206. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  207. gevent.joinall(t)
  208. recall_result_list = [i.get() for i in t]
  209. # end_recall = time.time()
  210. # log_.info({
  211. # 'logTimestamp': int(time.time() * 1000),
  212. # 'request_id': request_id,
  213. # 'mid': mid,
  214. # 'uid': uid,
  215. # 'operation': 'recall',
  216. # 'recall_result': recall_result_list,
  217. # 'executeTime': (time.time() - start_recall) * 1000
  218. # })
  219. result['recallResult'] = recall_result_list
  220. result['recallTime'] = (time.time() - start_recall) * 1000
  221. # ####### 排序
  222. start_rank = time.time()
  223. # log_.info('====== rank')
  224. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  225. if ab_code in [
  226. config_.AB_CODE['rov_rank_appType_18_19'],
  227. config_.AB_CODE['rov_rank_appType_19'],
  228. config_.AB_CODE['top_video_relevant_appType_19']
  229. ]:
  230. data = {
  231. 'rov_pool_recall': recall_result_list[0],
  232. 'flow_pool_recall': recall_result_list[1]
  233. }
  234. else:
  235. data = {
  236. 'rov_pool_recall': recall_result_list[0],
  237. 'flow_pool_recall': []
  238. }
  239. else:
  240. if recall_result_list[1]:
  241. redis_helper = RedisHelper()
  242. quick_flow_pool_P = redis_helper.get_data_from_redis(
  243. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  244. )
  245. if quick_flow_pool_P:
  246. flow_pool_P = quick_flow_pool_P
  247. data = {
  248. 'rov_pool_recall': recall_result_list[0],
  249. 'flow_pool_recall': recall_result_list[1]
  250. }
  251. else:
  252. data = {
  253. 'rov_pool_recall': recall_result_list[0],
  254. 'flow_pool_recall': recall_result_list[2]
  255. }
  256. #if ab_code=="ab_new_test":
  257. # rank_result = video_new_rank(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  258. #else:
  259. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  260. # 老视频实验
  261. # if ab_code in [config_.AB_CODE['old_video']]:
  262. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  263. # size=size, top_K=top_K, old_video_index=old_video_index)
  264. # end_rank = time.time()
  265. # log_.info({
  266. # 'logTimestamp': int(time.time() * 1000),
  267. # 'request_id': request_id,
  268. # 'mid': mid,
  269. # 'uid': uid,
  270. # 'operation': 'rank',
  271. # 'rank_result': rank_result,
  272. # 'executeTime': (time.time() - start_rank) * 1000
  273. # })
  274. result['rankResult'] = rank_result
  275. result['rankTime'] = (time.time() - start_rank) * 1000
  276. # if not rank_result:
  277. # # 兜底策略
  278. # # log_.info('====== bottom strategy')
  279. # start_bottom = time.time()
  280. # rank_result = bottom_strategy2(
  281. # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  282. # )
  283. #
  284. # # if ab_code == config_.AB_CODE['region_rank_by_h'].get('abtest_130'):
  285. # # rank_result = bottom_strategy2(
  286. # # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  287. # # )
  288. # # else:
  289. # # rank_result = bottom_strategy(
  290. # # request_id=request_id, size=size, app_type=app_type, ab_code=ab_code, params=params
  291. # # )
  292. #
  293. # # log_.info({
  294. # # 'logTimestamp': int(time.time() * 1000),
  295. # # 'request_id': request_id,
  296. # # 'mid': mid,
  297. # # 'uid': uid,
  298. # # 'operation': 'bottom',
  299. # # 'bottom_result': rank_result,
  300. # # 'executeTime': (time.time() - start_bottom) * 1000
  301. # # })
  302. # result['bottomResult'] = rank_result
  303. # result['bottomTime'] = (time.time() - start_bottom) * 1000
  304. #
  305. # result['rankResult'] = rank_result
  306. return result
  307. # return rank_result, last_rov_recall_key
  308. def video_old_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info,
  309. expire_time=24*3600, ab_code=config_.AB_CODE['initial'], rule_key='', data_key='',
  310. no_op_flag=False, old_video_index=-1, video_id=None, params=None, rule_key_30day=None,
  311. shield_config=None):
  312. """
  313. 首页线上推荐逻辑
  314. :param request_id: request_id
  315. :param mid: mid type-string
  316. :param uid: uid type-string
  317. :param size: 请求视频数量 type-int
  318. :param top_K: 保证topK为召回池视频 type-int
  319. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  320. :param app_type: 产品标识 type-int
  321. :param algo_type: 算法类型 type-string
  322. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  323. :param expire_time: 末位视频记录redis过期时间
  324. :param ab_code: AB实验code
  325. :param video_id: 相关推荐头部视频id
  326. :param params:
  327. :return:
  328. """
  329. result = {}
  330. # ####### 多进程召回
  331. start_recall = time.time()
  332. # log_.info('====== recall')
  333. recall_result_list = []
  334. pool_recall = PoolRecall(request_id=request_id,
  335. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  336. client_info=client_info, rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  337. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config, video_id= video_id)
  338. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  339. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time)]
  340. if ab_code == 60054:
  341. t.append(gevent.spawn(pool_recall.get_sim_hot_item_reall_filter))
  342. else:
  343. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  344. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  345. gevent.spawn(pool_recall.flow_pool_recall, size)]
  346. if ab_code == 60054:
  347. t.append(gevent.spawn(pool_recall.get_sim_hot_item_reall_filter))
  348. gevent.joinall(t)
  349. recall_result_list = [i.get() for i in t]
  350. if len(recall_result_list)<0:
  351. result['recallResult']= []
  352. result['rankResult'] = []
  353. return result
  354. if ab_code == 60054:
  355. rov_pool_recall = []
  356. if len(recall_result_list)>=4:
  357. region_recall = recall_result_list[0]
  358. sim_recall = recall_result_list[3]
  359. now_video_ids = set('')
  360. if len(region_recall)>0:
  361. for video in region_recall:
  362. video_id = video.get('videoId')
  363. if video_id not in now_video_ids:
  364. rov_pool_recall.append(video)
  365. now_video_ids.add(video_id)
  366. if len(sim_recall)>0:
  367. for video in sim_recall:
  368. video_id = video.get('videoId')
  369. if video_id not in now_video_ids:
  370. rov_pool_recall.append(video)
  371. now_video_ids.add(video_id)
  372. if len(rov_pool_recall)>0:
  373. recall_result_list[0] = rov_pool_recall
  374. result['recallResult'] = recall_result_list
  375. result['recallTime'] = (time.time() - start_recall) * 1000
  376. # ####### 排序
  377. start_rank = time.time()
  378. # log_.info('====== rank')
  379. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  380. if ab_code in [
  381. config_.AB_CODE['rov_rank_appType_18_19'],
  382. config_.AB_CODE['rov_rank_appType_19'],
  383. config_.AB_CODE['top_video_relevant_appType_19']
  384. ]:
  385. data = {
  386. 'rov_pool_recall': recall_result_list[0],
  387. 'flow_pool_recall': recall_result_list[1]
  388. }
  389. else:
  390. data = {
  391. 'rov_pool_recall': recall_result_list[0],
  392. 'flow_pool_recall': []
  393. }
  394. else:
  395. if recall_result_list[1]:
  396. redis_helper = RedisHelper()
  397. quick_flow_pool_P = redis_helper.get_data_from_redis(
  398. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  399. )
  400. if quick_flow_pool_P:
  401. flow_pool_P = quick_flow_pool_P
  402. data = {
  403. 'rov_pool_recall': recall_result_list[0],
  404. 'flow_pool_recall': recall_result_list[1]
  405. }
  406. else:
  407. data = {
  408. 'rov_pool_recall': recall_result_list[0],
  409. 'flow_pool_recall': recall_result_list[2]
  410. }
  411. #if ab_code=="ab_new_test":
  412. #print("before data:", data)
  413. rank_result = video_new_rank2(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P), ab_code=ab_code)
  414. #print(rank_result)
  415. result['rankResult'] = rank_result
  416. result['rankTime'] = (time.time() - start_rank) * 1000
  417. return result
  418. # return rank_result, last_rov_recall_key
  419. def new_video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info,
  420. expire_time=24*3600, ab_code=config_.AB_CODE['initial'], rule_key='', data_key='',
  421. no_op_flag=False, old_video_index=-1, video_id=None, params=None, rule_key_30day=None,
  422. shield_config=None):
  423. """
  424. 首页线上推荐逻辑
  425. :param request_id: request_id
  426. :param mid: mid type-string
  427. :param uid: uid type-string
  428. :param size: 请求视频数量 type-int
  429. :param top_K: 保证topK为召回池视频 type-int
  430. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  431. :param app_type: 产品标识 type-int
  432. :param algo_type: 算法类型 type-string
  433. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  434. :param expire_time: 末位视频记录redis过期时间
  435. :param ab_code: AB实验code
  436. :param video_id: 相关推荐头部视频id
  437. :param params:
  438. :return:
  439. """
  440. #1. recall
  441. result = {}
  442. result['rankResult'] = []
  443. # ####### 多进程召回
  444. start_recall = time.time()
  445. # 1. 根据城市或者省份获取region_code
  446. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  447. # 获取provinceCode
  448. province_code = client_info.get('provinceCode', '-1')
  449. # 获取cityCode
  450. city_code = client_info.get('cityCode', '-1')
  451. if city_code in city_code_list:
  452. # 分城市数据存在时,获取城市分组数据
  453. region_code = city_code
  454. else:
  455. region_code = province_code
  456. if region_code == '':
  457. region_code = '-1'
  458. #print("region_code:", region_code)
  459. #size =1000
  460. pool_recall = PoolRecall(request_id=request_id,
  461. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  462. client_info=client_info, rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  463. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config, video_id= video_id)
  464. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  465. t = [gevent.spawn(pool_recall.get_region_hour_recall, size, region_code),
  466. gevent.spawn(pool_recall.get_region_day_recall, size, region_code),
  467. gevent.spawn(pool_recall.get_selected_recall, size, region_code),
  468. gevent.spawn(pool_recall.get_no_selected_recall, size, region_code)
  469. ]
  470. if ab_code == 60049:
  471. t.append(gevent.spawn(pool_recall.get_sim_hot_item_reall))
  472. else:
  473. t = [
  474. gevent.spawn(pool_recall.get_region_hour_recall, size, region_code),
  475. gevent.spawn(pool_recall.get_region_day_recall, size, region_code),
  476. gevent.spawn(pool_recall.get_selected_recall, size, region_code),
  477. gevent.spawn(pool_recall.get_no_selected_recall, size, region_code),
  478. gevent.spawn(pool_recall.new_flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  479. gevent.spawn(pool_recall.new_flow_pool_recall, size)]
  480. if ab_code ==60049:
  481. t.append(gevent.spawn(pool_recall.get_sim_hot_item_reall))
  482. gevent.joinall(t)
  483. # all recall_result
  484. all_recall_result_list = [i.get() for i in t]
  485. all_recall_result = []
  486. #print(all_recall_result_list)
  487. result['recallTime'] = (time.time() - start_recall) * 1000
  488. #print("recall time:", result['recallTime'])
  489. if not all_recall_result_list or len(all_recall_result_list)==0:
  490. return result
  491. for recall_item in all_recall_result_list:
  492. if not recall_item or len(recall_item)==0:
  493. continue
  494. for per_item in recall_item:
  495. all_recall_result.append(per_item)
  496. #print("all_recall_result:", all_recall_result)
  497. #2. duplicate
  498. dup_time = time.time()
  499. recall_dict = {}
  500. fast_flow_set = set('')
  501. flow_flow_set = set('')
  502. region_h_recall = []
  503. region_day_recall = []
  504. select_day_recall = []
  505. no_selected_recall = []
  506. sim_hot_recall = []
  507. flow_recall = []
  508. flowFlag_dict = {}
  509. for per_item in all_recall_result:
  510. #print(per_item)
  511. try:
  512. vId = int(per_item.get("videoId",0))
  513. if vId==0:
  514. continue
  515. recall_name = per_item.get("pushFrom",'')
  516. flow_pool = per_item.get("flowPool", '')
  517. if flow_pool != '':
  518. flow_pool_id = int(flow_pool.split('#')[0])
  519. if flow_pool_id == config_.QUICK_FLOW_POOL_ID:
  520. fast_flow_set.add(vId)
  521. else:
  522. flow_flow_set.add(vId)
  523. flowFlag_dict[vId] = flow_pool
  524. #duplicate divide into
  525. if vId not in recall_dict:
  526. if recall_name == config_.PUSH_FROM['rov_recall_region_h']:
  527. region_h_recall.append(per_item)
  528. elif recall_name == config_.PUSH_FROM['rov_recall_region_24h']:
  529. region_day_recall.append(per_item)
  530. elif recall_name == config_.PUSH_FROM['rov_recall_24h']:
  531. select_day_recall.append(per_item)
  532. elif recall_name == config_.PUSH_FROM['rov_recall_24h_dup']:
  533. no_selected_recall.append(per_item)
  534. elif recall_name == config_.PUSH_FROM['sim_hot_vid_recall']:
  535. sim_hot_recall.append(per_item)
  536. elif recall_name == config_.PUSH_FROM['flow_recall']:
  537. flow_recall.append(per_item)
  538. if vId not in recall_dict:
  539. recall_dict[vId] = recall_name
  540. else:
  541. recall_name = recall_dict[vId] + "," + recall_name
  542. recall_dict[vId] = recall_name
  543. except:
  544. continue
  545. #print("recall_dict:", recall_dict)
  546. #print("recall time:", (time.time()-dup_time)*1000)
  547. #3. filter video, 先过预曝光
  548. filter_time = time.time()
  549. filter_ = FilterVideos(request_id=request_id,
  550. app_type=app_type, mid=mid, uid=uid, video_ids=list(recall_dict.keys()))
  551. #print("filer:", list(recall_dict.keys()))
  552. #a).expose filter
  553. #all_recall_list = list(recall_dict.keys())
  554. all_recall_list = filter_.filter_videos_new(region_code=region_code, shield_config=shield_config, flow_set=flowFlag_dict.keys())
  555. #print("filer after:", all_recall_list)
  556. #print("filter_ time:", (time.time() - filter_time) * 1000)
  557. #4. sort: old sort: flow 按概率出
  558. start_rank = time.time()
  559. #quick_flow_pool_P get from redis
  560. redis_helper = RedisHelper()
  561. quick_flow_pool_P = redis_helper.get_data_from_redis(
  562. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  563. )
  564. if quick_flow_pool_P:
  565. flow_pool_P = quick_flow_pool_P
  566. rank_result= []
  567. if ab_code==60048 or ab_code==60049:
  568. rank_ids, add_flow_set = video_new_rank(videoIds=all_recall_list,fast_flow_set=fast_flow_set, flow_set=flow_flow_set,size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  569. #print("rank_ids:", rank_ids)
  570. for rank_item in rank_ids:
  571. rank_id = rank_item[0]
  572. rank_score = rank_item[1]
  573. pushFrom = recall_dict.get(rank_id, '')
  574. #print(pushFrom, rank_id)
  575. flowPoolFlag = ''
  576. if rank_id in add_flow_set:
  577. flowPoolFlag = flowFlag_dict.get(rank_id,'')
  578. rank_result.append({'videoId': rank_id, 'flowPool': flowPoolFlag,
  579. 'rovScore': rank_score, 'pushFrom': pushFrom,
  580. 'abCode': ab_code})
  581. #
  582. #print("rank_result:", rank_result)
  583. else:
  584. all_dup_recall_result = region_h_recall+region_day_recall+select_day_recall+no_selected_recall+flow_recall
  585. rank_result = refactor_video_rank(rov_recall_rank=all_dup_recall_result,fast_flow_set=fast_flow_set, flow_set=flow_flow_set, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  586. result['rankResult'] = rank_result
  587. result['rankTime'] = (time.time() - start_rank) * 1000
  588. #print("rank time:", result['rankTime'])
  589. return result
  590. # return rank_result, last_rov_recall_key
  591. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  592. """
  593. 对排序后的结果 按照AB实验进行对应的分组操作
  594. :param rank_result: 排序后的结果
  595. :param ab_code_list: 此次请求参与的 ab实验组
  596. :param app_type: 产品标识
  597. :param mid: mid
  598. :param uid: uid
  599. :param kwargs: 其他参数
  600. :return:
  601. """
  602. # ####### 视频宽高比AB实验
  603. # 对内容精选进行 视频宽高比分发实验
  604. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  605. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  606. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  607. # app_type, mid, uid, rank_result))
  608. # 按position位置排序
  609. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  610. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  611. print('===========================')
  612. print(rank_result)
  613. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  614. app_type, mid, uid, rank_result))
  615. # 相关推荐强插
  616. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  617. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  618. # head_vid = kwargs['head_vid']
  619. # size = kwargs['size']
  620. # rank_result = relevant_video_top_recommend(
  621. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  622. # )
  623. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  624. # app_type, mid, uid, head_vid, rank_result))
  625. return rank_result
  626. def update_redis_data(result, app_type, mid, top_K, expire_time=24*3600):
  627. """
  628. 根据最终的排序结果更新相关redis数据
  629. :param result: 排序结果
  630. :param app_type: 产品标识
  631. :param mid: mid
  632. :param top_K: 保证topK为召回池视频 type-int
  633. :param expire_time: 末位视频记录redis过期时间
  634. :return: None
  635. """
  636. # ####### redis数据刷新
  637. try:
  638. redis_helper = RedisHelper()
  639. # log_.info('====== update redis')
  640. if mid and mid != 'null':
  641. # mid为空时,不做预曝光和定位数据更新
  642. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  643. preview_key_name = f"{config_.PREVIEW_KEY_PREFIX}{app_type}:{mid}"
  644. preview_video_ids = [int(item['videoId']) for item in result]
  645. if preview_video_ids:
  646. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  647. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  648. # log_.info('preview redis update success!')
  649. # # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  650. # rov_recall_video = [item['videoId'] for item in result[:top_K]
  651. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  652. # if len(rov_recall_video) > 0:
  653. # if app_type == config_.APP_TYPE['APP']:
  654. # key_name = config_.UPDATE_ROV_KEY_NAME_APP
  655. # else:
  656. # key_name = config_.UPDATE_ROV_KEY_NAME
  657. # if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  658. # redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  659. # expire_time=expire_time)
  660. # log_.info('last video redis update success!')
  661. # 将此次获取的 地域分组小时级数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  662. rov_recall_h_video = [item['videoId'] for item in result[:top_K]
  663. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_region_h']]
  664. if len(rov_recall_h_video) > 0:
  665. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_H_PREFIX}{app_type}:{mid}'
  666. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_h_video[-1],
  667. expire_time=expire_time)
  668. # 将此次获取的 地域分组相对24h数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  669. rov_recall_24h_dup1_video = [item['videoId'] for item in result[:top_K]
  670. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_region_24h']]
  671. if len(rov_recall_24h_dup1_video) > 0:
  672. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP1_24H_PREFIX}{app_type}:{mid}'
  673. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup1_video[-1],
  674. expire_time=expire_time)
  675. # 将此次获取的 相对24h筛选数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  676. rov_recall_24h_dup2_video = [item['videoId'] for item in result[:top_K]
  677. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_24h']]
  678. if len(rov_recall_24h_dup2_video) > 0:
  679. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP2_24H_PREFIX}{app_type}:{mid}'
  680. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup2_video[-1],
  681. expire_time=expire_time)
  682. # 将此次获取的 相对24h筛选后剩余数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  683. rov_recall_24h_dup3_video = [item['videoId'] for item in result[:top_K]
  684. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_24h_dup']]
  685. if len(rov_recall_24h_dup3_video) > 0:
  686. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP3_24H_PREFIX}{app_type}:{mid}'
  687. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup3_video[-1],
  688. expire_time=expire_time)
  689. # # 将此次获取的 相对48h筛选数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  690. # rov_recall_48h_dup2_video = [item['videoId'] for item in result[:top_K]
  691. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall_48h']]
  692. # if len(rov_recall_48h_dup2_video) > 0:
  693. # last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP2_48H_PREFIX}{app_type}:{mid}'
  694. # redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_48h_dup2_video[-1],
  695. # expire_time=expire_time)
  696. #
  697. # # 将此次获取的 相对48h筛选后剩余数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  698. # rov_recall_48h_dup3_video = [item['videoId'] for item in result[:top_K]
  699. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall_48h_dup']]
  700. # if len(rov_recall_48h_dup3_video) > 0:
  701. # last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP3_48H_PREFIX}{app_type}:{mid}'
  702. # redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_48h_dup3_video[-1],
  703. # expire_time=expire_time)
  704. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  705. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  706. # 获取本地分发数-1策略开关
  707. switch = redis_helper.get_data_from_redis(key_name=config_.IN_FLOW_POOL_COUNT_SWITCH_KEY_NAME)
  708. if switch is not None:
  709. if int(switch) == 1:
  710. flow_recall_video = [item for item in result if item.get('flowPool', None) is not None]
  711. else:
  712. flow_recall_video = [item for item in result if
  713. item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  714. else:
  715. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  716. if flow_recall_video:
  717. update_local_distribute_count(flow_recall_video)
  718. # log_.info('update local distribute count success!')
  719. # 限流视频分发数记录
  720. if app_type == config_.APP_TYPE['APP']:
  721. # APP 不计入
  722. return
  723. limit_video_id_list = redis_helper.get_data_from_set(
  724. key_name=f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_SET}{datetime.today().strftime('%Y%m%d')}"
  725. )
  726. if limit_video_id_list is not None:
  727. limit_video_id_list = [int(item) for item in limit_video_id_list]
  728. for item in result:
  729. video_id = item['videoId']
  730. if video_id in limit_video_id_list:
  731. key_name = f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_DISTRIBUTE_COUNT}{video_id}"
  732. redis_helper.setnx_key(key_name=key_name, value=0, expire_time=24*2600)
  733. redis_helper.incr_key(key_name=key_name, amount=1, expire_time=24*3600)
  734. except Exception as e:
  735. log_.error("update redis data fail!")
  736. log_.error(traceback.format_exc())
  737. def update_flow_redis_data(result, app_type, mid, top_K, expire_time=24*3600):
  738. """
  739. 根据最终的排序结果更新相关redis数据
  740. :param result: 排序结果
  741. :param app_type: 产品标识
  742. :param mid: mid
  743. :param top_K: 保证topK为召回池视频 type-int
  744. :param expire_time: 末位视频记录redis过期时间
  745. :return: None
  746. """
  747. # ####### redis数据刷新
  748. try:
  749. redis_helper = RedisHelper()
  750. # log_.info('====== update redis')
  751. if mid and mid != 'null':
  752. # mid为空时,不做预曝光和定位数据更新
  753. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  754. preview_key_name = f"{config_.PREVIEW_KEY_PREFIX}{app_type}:{mid}"
  755. preview_video_ids = [int(item['videoId']) for item in result]
  756. if preview_video_ids:
  757. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  758. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  759. # log_.info('preview redis update success!')
  760. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  761. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  762. # 获取本地分发数-1策略开关
  763. switch = redis_helper.get_data_from_redis(key_name=config_.IN_FLOW_POOL_COUNT_SWITCH_KEY_NAME)
  764. if switch is not None:
  765. if int(switch) == 1:
  766. flow_recall_video = [item for item in result if item.get('flowPool', None) is not None]
  767. else:
  768. flow_recall_video = [item for item in result if
  769. item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  770. else:
  771. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  772. if flow_recall_video:
  773. update_local_distribute_count(flow_recall_video)
  774. # log_.info('update local distribute count success!')
  775. # 限流视频分发数记录
  776. if app_type == config_.APP_TYPE['APP']:
  777. # APP 不计入
  778. return
  779. limit_video_id_list = redis_helper.get_data_from_set(
  780. key_name=f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_SET}{datetime.today().strftime('%Y%m%d')}"
  781. )
  782. if limit_video_id_list is not None:
  783. limit_video_id_list = [int(item) for item in limit_video_id_list]
  784. for item in result:
  785. video_id = item['videoId']
  786. if video_id in limit_video_id_list:
  787. key_name = f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_DISTRIBUTE_COUNT}{video_id}"
  788. redis_helper.setnx_key(key_name=key_name, value=0, expire_time=24*2600)
  789. redis_helper.incr_key(key_name=key_name, amount=1, expire_time=24*3600)
  790. except Exception as e:
  791. log_.error("update redis data fail!")
  792. log_.error(traceback.format_exc())
  793. def update_local_distribute_count(videos):
  794. """
  795. 更新本地分发数
  796. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  797. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  798. :return:
  799. """
  800. try:
  801. redis_helper = RedisHelper()
  802. for item in videos:
  803. video_id, flow_pool = item['videoId'], item['flowPool']
  804. key_name = f"{config_.LOCAL_DISTRIBUTE_COUNT_PREFIX}{video_id}:{flow_pool}"
  805. # 本地记录的分发数 - 1
  806. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=15 * 60)
  807. # 对该视频做分发数检查
  808. cur_count = redis_helper.get_data_from_redis(key_name=key_name)
  809. # 无记录
  810. if cur_count is None:
  811. continue
  812. # 本地分发数 cur_count <= 0,从所有的流量召回池移除,删除本地分发记录key
  813. if int(cur_count) <= 0:
  814. add_remove_log = False
  815. redis_helper.del_keys(key_name=key_name)
  816. for app_name in config_.APP_TYPE:
  817. app_type = config_.APP_TYPE.get(app_name)
  818. flow_pool_key_list = [
  819. f"{config_.FLOWPOOL_KEY_NAME_PREFIX}{app_type}",
  820. f"{config_.QUICK_FLOWPOOL_KEY_NAME_PREFIX}{app_type}:{config_.QUICK_FLOW_POOL_ID}"
  821. ]
  822. for key in flow_pool_key_list:
  823. remove_res = redis_helper.remove_value_from_zset(key_name=key, value=f"{video_id}-{flow_pool}")
  824. if remove_res > 0:
  825. add_remove_log = True
  826. video_flow_pool_key_list = [
  827. f"{config_.QUICK_FLOWPOOL_VIDEO_INFO_KEY_NAME_PREFIX}{app_type}:{config_.QUICK_FLOW_POOL_ID}:{video_id}",
  828. f"{config_.FLOWPOOL_VIDEO_INFO_KEY_NAME_PREFIX}{app_type}:{video_id}"
  829. ]
  830. for key in video_flow_pool_key_list:
  831. redis_helper.remove_value_from_set(key_name=key, values=(flow_pool, ))
  832. if add_remove_log is True:
  833. log_.info({'tag': 'remove video_id from flow_pool', 'video_id': video_id, 'flow_pool': flow_pool})
  834. # if redis_helper.key_exists(key_name=key_name):
  835. # # 该视频本地有记录,本地记录的分发数 - 1
  836. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  837. # else:
  838. # # 该视频本地无记录,接口获取的分发数 - 1
  839. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  840. except Exception as e:
  841. log_.error('update_local_distribute_count error...')
  842. log_.error(traceback.format_exc())
  843. def get_religion_class_with_mid(mid, religion_class_name):
  844. """
  845. 判断用户是否属于对应的宗教类型
  846. :param mid: mid type-string
  847. :param religion_class_name: 宗教类型, type-string, (catholicism-天主教, christianity-基督教)
  848. :return: religion_class_flag, type-int, (0-否,1-是), 默认: 0
  849. """
  850. religion_class_flag = 0
  851. now_date = datetime.today()
  852. redis_helper = RedisHelper()
  853. if mid:
  854. hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  855. hash_tag = hash_mid[-1:]
  856. key_name_prefix = config_.KEY_NAME_PREFIX_RELIGION_USER.get(religion_class_name, None)
  857. if key_name_prefix is None:
  858. return religion_class_flag
  859. key_name = f"{key_name_prefix}{hash_tag}:{datetime.strftime(now_date, '%Y%m%d')}"
  860. if not redis_helper.key_exists(key_name=key_name):
  861. key_name = f"{key_name_prefix}{hash_tag}:{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}"
  862. if redis_helper.data_exists_with_set(key_name=key_name, value=mid):
  863. religion_class_flag = 1
  864. return religion_class_flag
  865. def get_recommend_params(recommend_type, ab_exp_info, ab_info_data, mid, app_type, page_type=0):
  866. """
  867. 根据实验分组给定对应的推荐参数
  868. :param recommend_type: 首页推荐和相关推荐区分参数(0-首页推荐,1-相关推荐)
  869. :param ab_exp_info: AB实验组参数
  870. :param ab_info_data: app实验组参数
  871. :param mid: mid
  872. :param app_type: app_type, type-int
  873. :param page_type: 页面区分参数,默认:0(首页)
  874. :return:
  875. """
  876. top_K = config_.K
  877. flow_pool_P = config_.P
  878. # 不获取人工干预数据标记
  879. no_op_flag = True
  880. expire_time = 3600
  881. old_video_index = -1
  882. # 获取对应的默认配置
  883. ab_initial_config = config_.INITIAL_CONFIG.get(app_type, None)
  884. if ab_initial_config is None:
  885. ab_initial_config = config_.INITIAL_CONFIG.get('other')
  886. param = config_.AB_EXP_CODE[ab_initial_config]
  887. ab_code = param.get('ab_code')
  888. rule_key = param.get('rule_key')
  889. data_key = param.get('data_key')
  890. rule_key_30day = param.get('30day_rule_key')
  891. shield_config = config_.SHIELD_CONFIG
  892. # 默认使用 095 实验的配置
  893. # ab_code = config_.AB_EXP_CODE['095'].get('ab_code')
  894. # rule_key = config_.AB_EXP_CODE['095'].get('rule_key')
  895. # data_key = config_.AB_EXP_CODE['095'].get('data_key')
  896. # rule_key_30day = None
  897. # 获取用户近30天是否有回流
  898. # user_30day_return_result = get_user_has30day_return(mid=mid)
  899. # 获取实验配置
  900. if ab_exp_info:
  901. ab_exp_code_list = []
  902. config_value_dict = {}
  903. for _, item in ab_exp_info.items():
  904. if not item:
  905. continue
  906. for ab_item in item:
  907. ab_exp_code = ab_item.get('abExpCode', None)
  908. if not ab_exp_code:
  909. continue
  910. ab_exp_code_list.append(str(ab_exp_code))
  911. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  912. # 流量池视频分发概率实验
  913. if '211' in ab_exp_code_list:
  914. flow_pool_P = 0.9
  915. elif '221' in ab_exp_code_list:
  916. flow_pool_P = 0.7
  917. elif '299' in ab_exp_code_list:
  918. flow_pool_P = 0.5
  919. elif '300' in ab_exp_code_list:
  920. flow_pool_P = 0.4
  921. elif '301' in ab_exp_code_list:
  922. flow_pool_P = 0.6
  923. # if '136' in ab_exp_code_list:
  924. # # 无回流 - 消费人群
  925. # if user_30day_return_result == 0:
  926. # param = config_.AB_EXP_CODE.get('136')
  927. # ab_code = param.get('ab_code')
  928. # expire_time = 3600
  929. # rule_key = param.get('rule_key')
  930. # data_key = param.get('data_key')
  931. # no_op_flag = True
  932. # elif '137' in ab_exp_code_list:
  933. # # 有回流 - 分享人群
  934. # if user_30day_return_result == 1:
  935. # param = config_.AB_EXP_CODE.get('137')
  936. # ab_code = param.get('ab_code')
  937. # expire_time = 3600
  938. # rule_key = param.get('rule_key')
  939. # data_key = param.get('data_key')
  940. # no_op_flag = True
  941. # elif '161' in ab_exp_code_list:
  942. # # 无回流 - 消费人群
  943. # if user_30day_return_result == 0:
  944. # param = config_.AB_EXP_CODE.get('136')
  945. # ab_code = param.get('ab_code')
  946. # expire_time = 3600
  947. # rule_key = param.get('rule_key')
  948. # data_key = param.get('data_key')
  949. # no_op_flag = True
  950. # # 有回流 - 分享人群
  951. # else:
  952. # param = config_.AB_EXP_CODE.get('137')
  953. # ab_code = param.get('ab_code')
  954. # expire_time = 3600
  955. # rule_key = param.get('rule_key')
  956. # data_key = param.get('data_key')
  957. # no_op_flag = True
  958. # elif '162' in ab_exp_code_list:
  959. # # 有回流
  960. # if user_30day_return_result == 1:
  961. # param = config_.AB_EXP_CODE.get('162')
  962. # ab_code = param.get('ab_code')
  963. # expire_time = 3600
  964. # rule_key = param.get('rule_key')
  965. # data_key = param.get('data_key')
  966. # no_op_flag = True
  967. # 老好看视频 宗教人群实验
  968. if '228' in ab_exp_code_list:
  969. # 天主教
  970. religion_param = config_.AB_EXP_CODE['228']
  971. religion_class_name = religion_param.get('religion_class_name')
  972. religion_class_flag = get_religion_class_with_mid(mid=mid, religion_class_name=religion_class_name)
  973. if religion_class_flag == 1:
  974. ab_code = religion_param.get('ab_code')
  975. rule_key = religion_param.get('rule_key')
  976. data_key = religion_param.get('data_key')
  977. rule_key_30day = religion_param.get('30day_rule_key')
  978. elif '229' in ab_exp_code_list:
  979. # 基督教
  980. religion_param = config_.AB_EXP_CODE['229']
  981. religion_class_name = religion_param.get('religion_class_name')
  982. religion_class_flag = get_religion_class_with_mid(mid=mid, religion_class_name=religion_class_name)
  983. if religion_class_flag == 1:
  984. ab_code = religion_param.get('ab_code')
  985. rule_key = religion_param.get('rule_key')
  986. data_key = religion_param.get('data_key')
  987. rule_key_30day = religion_param.get('30day_rule_key')
  988. else:
  989. for code, param in config_.AB_EXP_CODE.items():
  990. if code in ab_exp_code_list:
  991. ab_code = param.get('ab_code')
  992. rule_key = param.get('rule_key')
  993. data_key = param.get('data_key')
  994. rule_key_30day = param.get('30day_rule_key')
  995. shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
  996. break
  997. """
  998. # 推荐条数 10->4 实验
  999. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  1000. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  1001. # if config_value:
  1002. # config_value = eval(str(config_value))
  1003. # else:
  1004. # config_value = {}
  1005. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  1006. # size = int(config_value.get('size', 4))
  1007. # top_K = int(config_value.get('K', 3))
  1008. # flow_pool_P = float(config_value.get('P', 0.3))
  1009. # else:
  1010. # size = size
  1011. # top_K = config_.K
  1012. # flow_pool_P = config_.P
  1013. # 算法实验相对对照组
  1014. # if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  1015. # ab_code = config_.AB_CODE['ab_initial']
  1016. # expire_time = 24 * 3600
  1017. # rule_key = config_.RULE_KEY['initial']
  1018. # no_op_flag = True
  1019. # 小时级更新-规则1 实验
  1020. # elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  1021. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  1022. # expire_time = 3600
  1023. # rule_key = config_.RULE_KEY['rule_rank1']
  1024. # no_op_flag = True
  1025. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  1026. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  1027. # expire_time = 3600
  1028. # rule_key = config_.RULE_KEY['rule_rank2']
  1029. # elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  1030. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  1031. # expire_time = 3600
  1032. # rule_key = config_.RULE_KEY['rule_rank3']
  1033. # no_op_flag = True
  1034. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  1035. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  1036. # expire_time = 3600
  1037. # rule_key = config_.RULE_KEY['rule_rank4']
  1038. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  1039. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  1040. # expire_time = 3600
  1041. # rule_key = config_.RULE_KEY['rule_rank5']
  1042. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  1043. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  1044. # expire_time = 24 * 3600
  1045. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  1046. # no_op_flag = True
  1047. # if config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  1048. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  1049. # expire_time = 3600
  1050. # rule_key = config_.RULE_KEY['rule_rank6']
  1051. # no_op_flag = True
  1052. # elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  1053. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  1054. # expire_time = 24 * 3600
  1055. # rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  1056. # no_op_flag = True
  1057. # elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  1058. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  1059. # expire_time = 3600
  1060. # rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  1061. # no_op_flag = True
  1062. # elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  1063. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  1064. # expire_time = 3600
  1065. # rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  1066. # no_op_flag = True
  1067. # elif config_.AB_EXP_CODE['24h_rule_rank2'] in ab_exp_code_list:
  1068. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank2')
  1069. # expire_time = 3600
  1070. # rule_key = config_.RULE_KEY_24H['24h_rule_rank2']
  1071. # no_op_flag = True
  1072. # elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  1073. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  1074. # expire_time = 3600
  1075. # rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  1076. # no_op_flag = True
  1077. # if config_.AB_EXP_CODE['region_rule_rank3'] in ab_exp_code_list or\
  1078. # config_.AB_EXP_CODE['region_rule_rank3_appType_19'] in ab_exp_code_list or\
  1079. # config_.AB_EXP_CODE['region_rule_rank3_appType_4'] in ab_exp_code_list or\
  1080. # config_.AB_EXP_CODE['region_rule_rank3_appType_6'] in ab_exp_code_list or\
  1081. # config_.AB_EXP_CODE['region_rule_rank3_appType_18'] in ab_exp_code_list:
  1082. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  1083. # expire_time = 3600
  1084. # rule_key = config_.RULE_KEY_REGION['region_rule_rank3'].get('rule_key')
  1085. # data_key = config_.RULE_KEY_REGION['region_rule_rank3'].get('data_key')
  1086. # no_op_flag = True
  1087. # if config_.AB_EXP_CODE['region_rule_rank4'] in ab_exp_code_list or\
  1088. if config_.AB_EXP_CODE['region_rule_rank4_appType_19'] in ab_exp_code_list or \
  1089. config_.AB_EXP_CODE['region_rule_rank4_appType_4'] in ab_exp_code_list or\
  1090. config_.AB_EXP_CODE['region_rule_rank4_appType_6'] in ab_exp_code_list or\
  1091. config_.AB_EXP_CODE['region_rule_rank4_appType_18'] in ab_exp_code_list:
  1092. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  1093. expire_time = 3600
  1094. rule_key = config_.RULE_KEY_REGION['region_rule_rank4'].get('rule_key')
  1095. data_key = config_.RULE_KEY_REGION['region_rule_rank4'].get('data_key')
  1096. no_op_flag = True
  1097. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data1'] in ab_exp_code_list:
  1098. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  1099. # expire_time = 3600
  1100. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data1'].get('rule_key')
  1101. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data1'].get('data_key')
  1102. # no_op_flag = True
  1103. # elif config_.AB_EXP_CODE['region_rule_rank3_appType_5_data2'] in ab_exp_code_list:
  1104. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3_appType_5_data2')
  1105. # expire_time = 3600
  1106. # rule_key = config_.RULE_KEY_REGION['region_rule_rank3_appType_5_data2'].get('rule_key')
  1107. # data_key = config_.RULE_KEY_REGION['region_rule_rank3_appType_5_data2'].get('data_key')
  1108. # no_op_flag = True
  1109. elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data3'] in ab_exp_code_list:
  1110. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_5_data3')
  1111. expire_time = 3600
  1112. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data3'].get('rule_key')
  1113. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data3'].get('data_key')
  1114. no_op_flag = True
  1115. elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data4'] in ab_exp_code_list:
  1116. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_5_data4')
  1117. expire_time = 3600
  1118. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data4'].get('rule_key')
  1119. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data4'].get('data_key')
  1120. no_op_flag = True
  1121. elif config_.AB_EXP_CODE['region_rule_rank4_appType_0_data2'] in ab_exp_code_list:
  1122. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_0_data2')
  1123. expire_time = 3600
  1124. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_0_data2'].get('rule_key')
  1125. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_0_data2'].get('data_key')
  1126. no_op_flag = True
  1127. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_19_data2'] in ab_exp_code_list:
  1128. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_19_data2')
  1129. # expire_time = 3600
  1130. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data2'].get('rule_key')
  1131. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data2'].get('data_key')
  1132. # no_op_flag = True
  1133. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_19_data3'] in ab_exp_code_list:
  1134. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_19_data3')
  1135. # expire_time = 3600
  1136. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data3'].get('rule_key')
  1137. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data3'].get('data_key')
  1138. # no_op_flag = True
  1139. elif config_.AB_EXP_CODE['region_rule_rank5_appType_0_data1'] in ab_exp_code_list:
  1140. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank5_appType_0_data1')
  1141. expire_time = 3600
  1142. rule_key = config_.RULE_KEY_REGION['region_rule_rank5_appType_0_data1'].get('rule_key')
  1143. data_key = config_.RULE_KEY_REGION['region_rule_rank5_appType_0_data1'].get('data_key')
  1144. no_op_flag = True
  1145. elif config_.AB_EXP_CODE['region_rule_rank4_appType_4_data2'] in ab_exp_code_list:
  1146. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_4_data2')
  1147. expire_time = 3600
  1148. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data2'].get('rule_key')
  1149. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data2'].get('data_key')
  1150. no_op_flag = True
  1151. elif config_.AB_EXP_CODE['region_rule_rank4_appType_4_data3'] in ab_exp_code_list:
  1152. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_4_data3')
  1153. expire_time = 3600
  1154. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data3'].get('rule_key')
  1155. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data3'].get('data_key')
  1156. no_op_flag = True
  1157. elif config_.AB_EXP_CODE['region_rule_rank4_appType_6_data2'] in ab_exp_code_list:
  1158. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_6_data2')
  1159. expire_time = 3600
  1160. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data2'].get('rule_key')
  1161. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data2'].get('data_key')
  1162. no_op_flag = True
  1163. elif config_.AB_EXP_CODE['region_rule_rank4_appType_6_data3'] in ab_exp_code_list:
  1164. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_6_data3')
  1165. expire_time = 3600
  1166. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data3'].get('rule_key')
  1167. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data3'].get('data_key')
  1168. no_op_flag = True
  1169. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_18_data2'] in ab_exp_code_list:
  1170. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_18_data2')
  1171. # expire_time = 3600
  1172. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_18_data2'].get('rule_key')
  1173. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_18_data2'].get('data_key')
  1174. # no_op_flag = True
  1175. # elif config_.AB_EXP_CODE['region_rule_rank6_appType_0_data1'] in ab_exp_code_list:
  1176. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank6_appType_0_data1')
  1177. # expire_time = 3600
  1178. # rule_key = config_.RULE_KEY_REGION['region_rule_rank6_appType_0_data1'].get('rule_key')
  1179. # data_key = config_.RULE_KEY_REGION['region_rule_rank6_appType_0_data1'].get('data_key')
  1180. # no_op_flag = True
  1181. else:
  1182. ab_code = config_.AB_CODE['initial']
  1183. expire_time = 24 * 3600
  1184. rule_key = config_.RULE_KEY_REGION['initial'].get('rule_key')
  1185. data_key = config_.RULE_KEY_REGION['initial'].get('data_key')
  1186. # # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  1187. # if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  1188. # ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  1189. # expire_time = 3600
  1190. # flow_pool_P = config_.P_18_19
  1191. # no_op_flag = True
  1192. #
  1193. # elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  1194. # ab_code = config_.AB_CODE['rov_rank_appType_19']
  1195. # expire_time = 3600
  1196. # top_K = 0
  1197. # flow_pool_P = config_.P_18_19
  1198. # no_op_flag = True
  1199. #
  1200. # elif config_.AB_EXP_CODE['top_video_relevant_appType_19'] in ab_exp_code_list and page_type == 2:
  1201. # ab_code = config_.AB_CODE['top_video_relevant_appType_19']
  1202. # expire_time = 3600
  1203. # top_K = 1
  1204. # flow_pool_P = config_.P_18_19
  1205. # no_op_flag = True
  1206. #
  1207. # # 票圈最惊奇完整影视资源实验
  1208. # elif config_.AB_EXP_CODE['whole_movies'] in ab_exp_code_list:
  1209. # ab_code = config_.AB_CODE['whole_movies']
  1210. # expire_time = 24 * 3600
  1211. # no_op_flag = True
  1212. # 老视频实验
  1213. # if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  1214. # ab_code = config_.AB_CODE['old_video']
  1215. # no_op_flag = True
  1216. # old_video_index = 2
  1217. # else:
  1218. # old_video_index = -1
  1219. """
  1220. # APP实验组
  1221. if ab_info_data:
  1222. ab_info_app = {}
  1223. for page_code, item in json.loads(ab_info_data).items():
  1224. if not item:
  1225. continue
  1226. ab_info_code = item.get('eventId', None)
  1227. if ab_info_code:
  1228. ab_info_app[page_code] = ab_info_code
  1229. # print(f"======{ab_info_app}")
  1230. # 首页推荐
  1231. if recommend_type == 0:
  1232. app_ab_code = ab_info_app.get('10003', None)
  1233. for code, param in config_.APP_AB_CODE['10003'].items():
  1234. if code == app_ab_code:
  1235. ab_code = param.get('ab_code')
  1236. rule_key = param.get('rule_key')
  1237. data_key = param.get('data_key')
  1238. break
  1239. # # 相关推荐
  1240. # elif recommend_type == 1:
  1241. # if config_.APP_AB_CODE['10037'] == ab_info_app.get('10037', None):
  1242. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  1243. # expire_time = 3600
  1244. # rule_key = 'rule3'
  1245. # data_key = 'data1'
  1246. # no_op_flag = True
  1247. return top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, no_op_flag, old_video_index, rule_key_30day, shield_config
  1248. def video_homepage_recommend(request_id, mid, uid, size, app_type, algo_type,
  1249. client_info, ab_exp_info, params, ab_info_data, version_audit_status):
  1250. """
  1251. 首页线上推荐逻辑
  1252. :param request_id: request_id
  1253. :param mid: mid type-string
  1254. :param uid: uid type-string
  1255. :param size: 请求视频数量 type-int
  1256. :param app_type: 产品标识 type-int
  1257. :param algo_type: 算法类型 type-string
  1258. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  1259. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  1260. :param params:
  1261. :param ab_info_data: app实验分组参数
  1262. :param version_audit_status: 小程序版本审核参数:1-审核中,2-审核通过
  1263. :return:
  1264. """
  1265. # 对 vlog 切换10%的流量做实验
  1266. # 对mid进行哈希
  1267. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  1268. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  1269. # # 简单召回 - 排序 - 兜底
  1270. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  1271. # algo_type=algo_type, client_info=client_info,
  1272. # expire_time=3600,
  1273. # ab_code=config_.AB_CODE['rank_by_h'])
  1274. # # ab-test
  1275. # result = ab_test_op(rank_result=rank_result,
  1276. # ab_code_list=[config_.AB_CODE['position_insert']],
  1277. # app_type=app_type, mid=mid, uid=uid)
  1278. # # redis数据刷新
  1279. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  1280. # expire_time=3600)
  1281. # if app_type == config_.APP_TYPE['APP']:
  1282. # # 票圈视频APP
  1283. # top_K = config_.K
  1284. # flow_pool_P = config_.P
  1285. # # 简单召回 - 排序 - 兜底
  1286. # rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  1287. # mid=mid, uid=uid, app_type=app_type,
  1288. # size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1289. # algo_type=algo_type, client_info=client_info,
  1290. # expire_time=12 * 3600, params=params)
  1291. # # ab-test
  1292. # # result = ab_test_op(rank_result=rank_result,
  1293. # # ab_code_list=[config_.AB_CODE['position_insert']],
  1294. # # app_type=app_type, mid=mid, uid=uid)
  1295. # # redis数据刷新
  1296. # update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  1297. # top_K=top_K, expire_time=12 * 3600)
  1298. #
  1299. # else:
  1300. recommend_result = {}
  1301. param_st = time.time()
  1302. # 特殊mid 和 小程序审核版本推荐处理
  1303. if mid in get_special_mid_list() or version_audit_status == 1:
  1304. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  1305. recommend_result['videos'] = rank_result
  1306. return recommend_result
  1307. # 普通mid推荐处理
  1308. top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, \
  1309. no_op_flag, old_video_index, rule_key_30day, shield_config = \
  1310. get_recommend_params(recommend_type=0, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data, mid=mid,
  1311. app_type=app_type)
  1312. # log_.info({
  1313. # 'logTimestamp': int(time.time() * 1000),
  1314. # 'request_id': request_id,
  1315. # 'app_type': app_type,
  1316. # 'mid': mid,
  1317. # 'uid': uid,
  1318. # 'operation': 'get_recommend_params',
  1319. # 'executeTime': (time.time() - param_st) * 1000
  1320. # })
  1321. recommend_result['getRecommendParamsTime'] = (time.time() - param_st) * 1000
  1322. # 简单召回 - 排序 - 兜底
  1323. get_result_st = time.time()
  1324. #print("ab_code:", ab_code)
  1325. if ab_code == 60047 or ab_code == 60048 or ab_code == 60049:
  1326. result = new_video_recommend(request_id=request_id,
  1327. mid=mid, uid=uid, app_type=app_type,
  1328. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1329. algo_type=algo_type, client_info=client_info,
  1330. ab_code=ab_code, expire_time=expire_time,
  1331. rule_key=rule_key, data_key=data_key,
  1332. no_op_flag=no_op_flag, old_video_index=old_video_index,
  1333. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1334. elif ab_code == 60050 or ab_code == 60051:
  1335. result = video_recommend(request_id=request_id,
  1336. mid=mid, uid=uid, app_type=app_type,
  1337. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1338. algo_type=algo_type, client_info=client_info,
  1339. ab_code=ab_code, expire_time=expire_time,
  1340. rule_key=rule_key, data_key=data_key,
  1341. no_op_flag=no_op_flag, old_video_index=old_video_index,
  1342. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1343. elif ab_code == 60052 or ab_code == 60053 or ab_code == 60054:
  1344. result = video_old_recommend(request_id=request_id,
  1345. mid=mid, uid=uid, app_type=app_type,
  1346. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1347. algo_type='', client_info=client_info,
  1348. ab_code=ab_code, expire_time=expire_time,
  1349. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1350. old_video_index=old_video_index, video_id=video_id,
  1351. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1352. else:
  1353. result = video_recommend(request_id=request_id,
  1354. mid=mid, uid=uid, app_type=app_type,
  1355. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1356. algo_type=algo_type, client_info=client_info,
  1357. ab_code=ab_code, expire_time=expire_time,
  1358. rule_key=rule_key, data_key=data_key,
  1359. no_op_flag=no_op_flag, old_video_index=old_video_index,
  1360. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1361. # log_.info({
  1362. # 'logTimestamp': int(time.time() * 1000),
  1363. # 'request_id': request_id,
  1364. # 'app_type': app_type,
  1365. # 'mid': mid,
  1366. # 'uid': uid,
  1367. # 'operation': 'get_recommend_result',
  1368. # 'executeTime': (time.time() - get_result_st) * 1000
  1369. # })
  1370. recommend_result['recommendOperation'] = result
  1371. rank_result = result.get('rankResult')
  1372. recommend_result['videos'] = rank_result
  1373. recommend_result['getRecommendResultTime'] = (time.time() - get_result_st) * 1000
  1374. # ab-test
  1375. # result = ab_test_op(rank_result=rank_result,
  1376. # ab_code_list=[config_.AB_CODE['position_insert']],
  1377. # app_type=app_type, mid=mid, uid=uid)
  1378. # redis数据刷新
  1379. update_redis_st = time.time()
  1380. if ab_code == 60047 or ab_code == 60048 or ab_code == 60049:
  1381. update_flow_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1382. elif ab_code == 60050 or ab_code == 60051:
  1383. update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1384. else:
  1385. update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1386. # log_.info({
  1387. # 'logTimestamp': int(time.time() * 1000),
  1388. # 'request_id': request_id,
  1389. # 'app_type': app_type,
  1390. # 'mid': mid,
  1391. # 'uid': uid,
  1392. # 'operation': 'update_redis_data',
  1393. # 'executeTime': (time.time() - update_redis_st) * 1000
  1394. # })
  1395. recommend_result['updateRedisDataTime'] = (time.time() - update_redis_st) * 1000
  1396. return recommend_result
  1397. # return rank_result
  1398. def video_relevant_recommend(request_id, video_id, mid, uid, size, app_type, ab_exp_info, client_info,
  1399. page_type, params, ab_info_data, version_audit_status):
  1400. """
  1401. 相关推荐逻辑
  1402. :param request_id: request_id
  1403. :param video_id: 相关推荐的头部视频id
  1404. :param mid: mid type-string
  1405. :param uid: uid type-string
  1406. :param size: 请求视频数量 type-int
  1407. :param app_type: 产品标识 type-int
  1408. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  1409. :param client_info: 地域参数
  1410. :param page_type: 页面区分参数 1:详情页;2:分享页
  1411. :param params:
  1412. :param ab_info_data: app实验分组参数
  1413. :param version_audit_status: 小程序版本审核参数:1-审核中,2-审核通过
  1414. :return: videos type-list
  1415. """
  1416. recommend_result = {}
  1417. param_st = time.time()
  1418. # 特殊mid 和 小程序审核版本推荐处理
  1419. if mid in get_special_mid_list() or version_audit_status == 1:
  1420. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  1421. recommend_result['videos'] = rank_result
  1422. return recommend_result
  1423. # return rank_result
  1424. # 普通mid推荐处理
  1425. top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, \
  1426. no_op_flag, old_video_index, rule_key_30day, shield_config = \
  1427. get_recommend_params(recommend_type=1, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data, page_type=page_type,
  1428. mid=mid, app_type=app_type)
  1429. # log_.info({
  1430. # 'logTimestamp': int(time.time() * 1000),
  1431. # 'request_id': request_id,
  1432. # 'app_type': app_type,
  1433. # 'mid': mid,
  1434. # 'uid': uid,
  1435. # 'operation': 'get_recommend_params',
  1436. # 'executeTime': (time.time() - param_st) * 1000
  1437. # })
  1438. recommend_result['getRecommendParamsTime'] = (time.time() - param_st) * 1000
  1439. # 简单召回 - 排序 - 兜底
  1440. get_result_st = time.time()
  1441. #print("ab_code:", ab_code)
  1442. if ab_code == 60047 or ab_code == 60048 or ab_code == 60049:
  1443. result = new_video_recommend(request_id=request_id,
  1444. mid=mid, uid=uid, app_type=app_type,
  1445. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1446. algo_type='', client_info=client_info,
  1447. ab_code=ab_code, expire_time=expire_time,
  1448. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1449. old_video_index=old_video_index, video_id=video_id,
  1450. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1451. # log_.info({
  1452. elif ab_code == 60050 or ab_code == 60051:
  1453. result = video_recommend(request_id=request_id,
  1454. mid=mid, uid=uid, app_type=app_type,
  1455. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1456. algo_type='', client_info=client_info,
  1457. ab_code=ab_code, expire_time=expire_time,
  1458. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1459. old_video_index=old_video_index, video_id=video_id,
  1460. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1461. elif ab_code == 60052 or ab_code == 60053 or ab_code == 60054:
  1462. result = video_old_recommend(request_id=request_id,
  1463. mid=mid, uid=uid, app_type=app_type,
  1464. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1465. algo_type='', client_info=client_info,
  1466. ab_code=ab_code, expire_time=expire_time,
  1467. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1468. old_video_index=old_video_index, video_id=video_id,
  1469. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1470. else:
  1471. result = video_recommend(request_id=request_id,
  1472. mid=mid, uid=uid, app_type=app_type,
  1473. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1474. algo_type='', client_info=client_info,
  1475. ab_code=ab_code, expire_time=expire_time,
  1476. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1477. old_video_index=old_video_index, video_id=video_id,
  1478. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1479. # log_.info({
  1480. # 'logTimestamp': int(time.time() * 1000),
  1481. # 'request_id': request_id,
  1482. # 'app_type': app_type,
  1483. # 'mid': mid,
  1484. # 'uid': uid,
  1485. # 'operation': 'get_recommend_result',
  1486. # 'executeTime': (time.time() - get_result_st) * 1000
  1487. # })
  1488. recommend_result['recommendOperation'] = result
  1489. rank_result = result.get('rankResult')
  1490. recommend_result['videos'] = rank_result
  1491. recommend_result['getRecommendResultTime'] = (time.time() - get_result_st) * 1000
  1492. # ab-test
  1493. # result = ab_test_op(rank_result=rank_result,
  1494. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  1495. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  1496. # redis数据刷新
  1497. update_redis_st = time.time()
  1498. # if ab_code == 60047 or ab_code == 60048 or ab_code == 60049:
  1499. # update_flow_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1500. # elif ab_code == 60050 or ab_code == 60051:
  1501. # update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1502. # else:
  1503. # update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1504. # log_.info({
  1505. # 'logTimestamp': int(time.time() * 1000),
  1506. # 'request_id': request_id,
  1507. # 'app_type': app_type,
  1508. # 'mid': mid,
  1509. # 'uid': uid,
  1510. # 'operation': 'update_redis_data',
  1511. # 'executeTime': (time.time() - update_redis_st) * 1000
  1512. # })
  1513. recommend_result['updateRedisDataTime'] = (time.time() - update_redis_st) * 1000
  1514. return recommend_result
  1515. # return rank_result
  1516. def special_mid_recommend(request_id, mid, uid, app_type, size,
  1517. ab_code=config_.AB_CODE['special_mid'],
  1518. push_from=config_.PUSH_FROM['special_mid'],
  1519. expire_time=24*3600):
  1520. redis_helper = RedisHelper()
  1521. # 特殊mid推荐指定视频列表
  1522. pool_recall = PoolRecall(request_id=request_id, app_type=app_type,
  1523. mid=mid, uid=uid, ab_code=ab_code)
  1524. # 获取相关redis key
  1525. special_key_name, redis_date = pool_recall.get_pool_redis_key(pool_type='special')
  1526. # 用户上一次在rov召回池对应的位置
  1527. last_special_recall_key = f'{config_.LAST_VIDEO_FROM_SPECIAL_POOL_PREFIX}{app_type}:{mid}:{redis_date}'
  1528. value = redis_helper.get_data_from_redis(last_special_recall_key)
  1529. if value:
  1530. idx = redis_helper.get_index_with_data(special_key_name, value)
  1531. if not idx:
  1532. idx = 0
  1533. else:
  1534. idx += 1
  1535. else:
  1536. idx = 0
  1537. recall_result = []
  1538. # 每次获取的视频数
  1539. get_size = size * 5
  1540. # 记录获取频次
  1541. freq = 0
  1542. while len(recall_result) < size:
  1543. freq += 1
  1544. if freq > config_.MAX_FREQ_FROM_ROV_POOL:
  1545. break
  1546. # 获取数据
  1547. data = redis_helper.get_data_zset_with_index(key_name=special_key_name,
  1548. start=idx, end=idx + get_size - 1,
  1549. with_scores=True)
  1550. if not data:
  1551. break
  1552. # 获取视频id,并转换类型为int,并存储为key-value{videoId: score}
  1553. # 添加视频源参数 pushFrom, abCode
  1554. temp_result = [{'videoId': int(value[0]), 'rovScore': value[1],
  1555. 'pushFrom': push_from, 'abCode': ab_code}
  1556. for value in data]
  1557. recall_result.extend(temp_result)
  1558. idx += get_size
  1559. # 将此次获取的末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  1560. if mid and recall_result:
  1561. # mid为空时,不做记录
  1562. redis_helper.set_data_to_redis(key_name=last_special_recall_key,
  1563. value=recall_result[:size][-1]['videoId'],
  1564. expire_time=expire_time)
  1565. return recall_result[:size]
  1566. def get_special_mid_list():
  1567. redis_helper = RedisHelper()
  1568. special_mid_list = redis_helper.get_data_from_set(key_name=config_.KEY_NAME_SPECIAL_MID)
  1569. if special_mid_list:
  1570. return special_mid_list
  1571. else:
  1572. return []
  1573. if __name__ == '__main__':
  1574. videos = [
  1575. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  1576. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  1577. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  1578. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  1579. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  1580. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  1581. "pushFrom": "flow_pool", "abCode": 10000},
  1582. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  1583. "abCode": 10000},
  1584. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  1585. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  1586. "pushFrom": "flow_pool", "abCode": 10000},
  1587. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  1588. ]
  1589. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  1590. print(res)