video_rank.py 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. import json
  2. import random
  3. import numpy
  4. from log import Log
  5. from config import set_config
  6. from video_recall import PoolRecall
  7. from db_helper import RedisHelper
  8. from utils import FilterVideos, send_msg_to_feishu
  9. from rank_service import get_featurs, get_tf_serving_sores
  10. log_ = Log()
  11. config_ = set_config()
  12. def video_rank(data, size, top_K, flow_pool_P):
  13. """
  14. 视频分发排序
  15. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  16. :param size: 请求数
  17. :param top_K: 保证topK为召回池视频 type-int
  18. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  19. :return: rank_result
  20. """
  21. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  22. return []
  23. # 将各路召回的视频按照score从大到小排序
  24. # 最惊奇相关推荐相似视频
  25. # relevant_recall = [item for item in data['rov_pool_recall']
  26. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  27. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  28. # 最惊奇完整影视视频
  29. # whole_movies_recall = [item for item in data['rov_pool_recall']
  30. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  31. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  32. # 最惊奇影视解说视频
  33. # talk_videos_recall = [item for item in data['rov_pool_recall']
  34. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  35. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  36. # 小时级更新数据
  37. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  38. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  39. # 相对30天天级规则更新数据
  40. day_30_recall = [item for item in data['rov_pool_recall']
  41. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  42. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  43. # 地域分组小时级规则更新数据
  44. region_h_recall = [item for item in data['rov_pool_recall']
  45. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  46. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  47. # 地域分组小时级更新24h规则更新数据
  48. region_24h_recall = [item for item in data['rov_pool_recall']
  49. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  50. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  51. # 地域分组天级规则更新数据
  52. # region_day_recall = [item for item in data['rov_pool_recall']
  53. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  54. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  55. # 相对24h规则更新数据
  56. rule_24h_recall = [item for item in data['rov_pool_recall']
  57. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  58. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  59. # 相对24h规则筛选后剩余更新数据
  60. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  61. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  62. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  63. # 相对48h规则更新数据
  64. rule_48h_recall = [item for item in data['rov_pool_recall']
  65. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  66. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  67. # 相对48h规则筛选后剩余更新数据
  68. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  69. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  70. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  71. # 天级规则更新数据
  72. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  73. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  74. # ROV召回池
  75. # rov_initial_recall = [
  76. # item for item in data['rov_pool_recall']
  77. # if item.get('pushFrom') not in
  78. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  79. # config_.PUSH_FROM['rov_recall_h'],
  80. # config_.PUSH_FROM['rov_recall_region_h'],
  81. # config_.PUSH_FROM['rov_recall_region_24h'],
  82. # config_.PUSH_FROM['rov_recall_region_day'],
  83. # config_.PUSH_FROM['rov_recall_24h'],
  84. # config_.PUSH_FROM['rov_recall_24h_dup'],
  85. # config_.PUSH_FROM['rov_recall_48h'],
  86. # config_.PUSH_FROM['rov_recall_48h_dup'],
  87. # config_.PUSH_FROM['rov_recall_day'],
  88. # config_.PUSH_FROM['whole_movies'],
  89. # config_.PUSH_FROM['talk_videos']]
  90. # ]
  91. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  92. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  93. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  94. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  95. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  96. # day_recall_rank + rov_initial_recall_rank
  97. rov_recall_rank = day_30_recall_rank + \
  98. region_h_recall_rank + region_24h_recall_rank + \
  99. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  100. rule_48h_recall_rank + rule_48h_dup_recall_rank
  101. # 流量池
  102. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  103. # 对各路召回的视频进行去重
  104. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  105. top_K=top_K)
  106. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  107. # rov_recall_rank, flow_recall_rank))
  108. # rank_result = relevant_recall_rank
  109. rank_result = []
  110. # 从ROV召回池中获取top k
  111. if len(rov_recall_rank) > 0:
  112. rank_result.extend(rov_recall_rank[:top_K])
  113. rov_recall_rank = rov_recall_rank[top_K:]
  114. else:
  115. rank_result.extend(flow_recall_rank[:top_K])
  116. flow_recall_rank = flow_recall_rank[top_K:]
  117. # 按概率 p 及score排序获取 size - k 个视频
  118. i = 0
  119. while i < size - top_K:
  120. # 随机生成[0, 1)浮点数
  121. rand = random.random()
  122. # log_.info('rand: {}'.format(rand))
  123. if rand < flow_pool_P:
  124. if flow_recall_rank:
  125. rank_result.append(flow_recall_rank[0])
  126. flow_recall_rank.remove(flow_recall_rank[0])
  127. else:
  128. rank_result.extend(rov_recall_rank[:size - top_K - i])
  129. return rank_result[:size]
  130. else:
  131. if rov_recall_rank:
  132. rank_result.append(rov_recall_rank[0])
  133. rov_recall_rank.remove(rov_recall_rank[0])
  134. else:
  135. rank_result.extend(flow_recall_rank[:size - top_K - i])
  136. return rank_result[:size]
  137. i += 1
  138. return rank_result[:size]
  139. def video_new_rank(videoIds, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  140. """
  141. 视频分发排序
  142. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  143. :param size: 请求数
  144. :param top_K: 保证topK为召回池视频 type-int
  145. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  146. :return: rank_result
  147. """
  148. add_flow_set = set('')
  149. if not videoIds or len(videoIds)==0:
  150. return [], add_flow_set
  151. redisObj = RedisHelper()
  152. vidKeys = []
  153. for vid in videoIds:
  154. vidKeys.append("k_p:"+str(vid))
  155. #print("vidKeys:", vidKeys)
  156. video_scores = redisObj.get_batch_key(vidKeys)
  157. #print(video_scores)
  158. video_items = []
  159. for i in range(len(video_scores)):
  160. try:
  161. #print(video_scores[i])
  162. if video_scores[i] is None:
  163. video_items.append((videoIds[i], 0.0))
  164. else:
  165. video_score_str = json.loads(video_scores[i])
  166. #print("video_score_str:",video_score_str)
  167. video_items.append((videoIds[i], video_score_str[0]))
  168. except Exception:
  169. video_items.append((videoIds[i], 0.0))
  170. sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  171. #print("sort_items:", sort_items)
  172. rov_recall_rank = sort_items
  173. fast_flow_recall_rank = []
  174. flow_recall_rank = []
  175. for item in sort_items:
  176. if item[0] in fast_flow_set:
  177. fast_flow_recall_rank.append(item)
  178. elif item[0] in flow_set:
  179. flow_recall_rank.append(item)
  180. # all flow result
  181. all_flow_recall_rank = fast_flow_recall_rank+flow_recall_rank
  182. rank_result = []
  183. rank_set = set('')
  184. # 从ROV召回池中获取top k
  185. if len(rov_recall_rank) > 0:
  186. rank_result.extend(rov_recall_rank[:top_K])
  187. rov_recall_rank = rov_recall_rank[top_K:]
  188. else:
  189. rank_result.extend(all_flow_recall_rank[:top_K])
  190. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  191. for rank_item in rank_result:
  192. rank_set.add(rank_item[0])
  193. #print("rank_result:", rank_result)
  194. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  195. i = 0
  196. left_quato = size - top_K
  197. j = 0
  198. jj = 0
  199. while i < left_quato and (j<len(all_flow_recall_rank) or jj<len(rov_recall_rank)):
  200. # 随机生成[0, 1)浮点数
  201. rand = random.random()
  202. # log_.info('rand: {}'.format(rand))
  203. if rand < flow_pool_P:
  204. for flow_item in all_flow_recall_rank:
  205. j+=1
  206. if flow_item[0] in rank_set:
  207. continue
  208. else:
  209. rank_result.append(flow_item)
  210. rank_set.add(flow_item[0])
  211. add_flow_set.add(flow_item[0])
  212. i += 1
  213. if i>= left_quato:
  214. break
  215. else:
  216. for recall_item in rov_recall_rank:
  217. jj+=1
  218. if recall_item[0] in rank_set:
  219. continue
  220. else:
  221. rank_result.append(recall_item)
  222. rank_set.add(recall_item[0])
  223. i += 1
  224. if i>= left_quato:
  225. break
  226. #print("rank_result:", rank_result)
  227. #print("add_flow_set:", add_flow_set)
  228. return rank_result[:size], add_flow_set
  229. def refactor_video_rank(rov_recall_rank, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  230. """
  231. 视频分发排序
  232. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  233. :param size: 请求数
  234. :param top_K: 保证topK为召回池视频 type-int
  235. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  236. :return: rank_result
  237. """
  238. if not rov_recall_rank or len(rov_recall_rank) == 0:
  239. return []
  240. fast_flow_recall_rank = []
  241. flow_recall_rank = []
  242. for item in rov_recall_rank:
  243. vid = item.get('videoId', 0)
  244. #print(item)
  245. if vid in fast_flow_set:
  246. fast_flow_recall_rank.append(item)
  247. elif vid in flow_set:
  248. flow_recall_rank.append(item)
  249. # all flow result
  250. all_flow_recall_rank = fast_flow_recall_rank + flow_recall_rank
  251. rank_result = []
  252. rank_set = set('')
  253. # 从ROV召回池中获取top k
  254. if len(rov_recall_rank) > 0:
  255. rank_result.extend(rov_recall_rank[:top_K])
  256. rov_recall_rank = rov_recall_rank[top_K:]
  257. else:
  258. rank_result.extend(all_flow_recall_rank[:top_K])
  259. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  260. #已存放了多少VID
  261. for rank_item in rank_result:
  262. rank_set.add(rank_item.get('videoId', 0))
  263. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  264. i = 0
  265. while i < size - top_K:
  266. # 随机生成[0, 1)浮点数
  267. rand = random.random()
  268. # log_.info('rand: {}'.format(rand))
  269. if rand < flow_pool_P:
  270. for flow_item in all_flow_recall_rank:
  271. flow_vid = flow_item.get('videoId', 0)
  272. if flow_vid in rank_set:
  273. continue
  274. else:
  275. rank_result.append(flow_item)
  276. rank_set.add(flow_vid)
  277. else:
  278. for recall_item in rov_recall_rank:
  279. flow_vid = recall_item.get('videoId', 0)
  280. if flow_vid in rank_set:
  281. continue
  282. else:
  283. rank_result.append(recall_item)
  284. rank_set.add(flow_vid)
  285. i += 1
  286. return rank_result[:size]
  287. def remove_duplicate(rov_recall, flow_recall, top_K):
  288. """
  289. 对多路召回的视频去重
  290. 去重原则:
  291. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  292. :param rov_recall: ROV召回池-已排序
  293. :param flow_recall: 流量池-已排序
  294. :param top_K: 保证topK为召回池视频 type-int
  295. :return:
  296. """
  297. flow_recall_result = []
  298. rov_recall_remove = []
  299. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  300. # rov_recall topK
  301. for item in rov_recall[:top_K]:
  302. if item['videoId'] in flow_recall_video_ids:
  303. flow_recall_video_ids.remove(item['videoId'])
  304. # other
  305. for item in rov_recall[top_K:]:
  306. if item['videoId'] in flow_recall_video_ids:
  307. rov_recall_remove.append(item)
  308. # rov recall remove
  309. for item in rov_recall_remove:
  310. rov_recall.remove(item)
  311. # flow recall remove
  312. for item in flow_recall:
  313. if item['videoId'] in flow_recall_video_ids:
  314. flow_recall_result.append(item)
  315. return rov_recall, flow_recall_result
  316. def bottom_strategy(request_id, size, app_type, ab_code, params):
  317. """
  318. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  319. :param request_id: request_id
  320. :param size: 需要获取的视频数
  321. :param app_type: 产品标识 type-int
  322. :param ab_code: abCode
  323. :param params:
  324. :return:
  325. """
  326. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  327. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  328. redis_helper = RedisHelper(params=params)
  329. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  330. if not data:
  331. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  332. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  333. # 二次兜底
  334. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  335. return bottom_data
  336. # 视频状态过滤采用离线定时过滤方案
  337. # 状态过滤
  338. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  339. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  340. if len(data) > size:
  341. random_data = numpy.random.choice(data, size, False)
  342. else:
  343. random_data = data
  344. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  345. for item in random_data]
  346. return bottom_data
  347. def bottom_strategy_last(size, app_type, ab_code, params):
  348. """
  349. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  350. :param size: 需要获取的视频数
  351. :param app_type: 产品标识 type-int
  352. :param ab_code: abCode
  353. :param params:
  354. :return:
  355. """
  356. redis_helper = RedisHelper(params=params)
  357. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  358. random_data = numpy.random.choice(bottom_data, size * 30, False)
  359. # 视频状态过滤采用离线定时过滤方案
  360. # 状态过滤
  361. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  362. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  363. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  364. for video_id in random_data[:size]]
  365. return bottom_data
  366. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  367. """
  368. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  369. :param size: 需要获取的视频数
  370. :param app_type: 产品标识 type-int
  371. :param mid: mid
  372. :param uid: uid
  373. :param ab_code: abCode
  374. :param client_info: 地域信息
  375. :param params:
  376. :return:
  377. """
  378. # 获取存在城市分组数据的城市编码列表
  379. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  380. # 获取provinceCode
  381. province_code = client_info.get('provinceCode', '-1')
  382. # 获取cityCode
  383. city_code = client_info.get('cityCode', '-1')
  384. if city_code in city_code_list:
  385. # 分城市数据存在时,获取城市分组数据
  386. region_code = city_code
  387. else:
  388. region_code = province_code
  389. if region_code == '':
  390. region_code = '-1'
  391. redis_helper = RedisHelper(params=params)
  392. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  393. bottom_result = []
  394. if bottom_data is None:
  395. return bottom_result
  396. if len(bottom_data) > 0:
  397. try:
  398. random_data = numpy.random.choice(bottom_data, size * 5, False)
  399. except Exception as e:
  400. random_data = bottom_data
  401. video_ids = [int(item) for item in random_data]
  402. # 过滤
  403. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  404. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  405. if filtered_data:
  406. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  407. for video_id in filtered_data[:size]]
  408. return bottom_result
  409. def video_rank_by_w_h_rate(videos):
  410. """
  411. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  412. :param videos:
  413. :return:
  414. """
  415. redis_helper = RedisHelper()
  416. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  417. top_2_push_from_flag = [False, False]
  418. for i, video in enumerate(videos[:2]):
  419. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  420. top_2_push_from_flag[i] = True
  421. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  422. return videos
  423. # ##### 判断前两个视频是否为横屏
  424. top_2_w_h_rate_flag = [False, False]
  425. for i, video in enumerate(videos[:2]):
  426. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  427. # 视频来源为置顶 或 流量池时,不做判断
  428. top_2_w_h_rate_flag[i] = True
  429. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  430. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  431. w_h_rate = redis_helper.get_score_with_value(
  432. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  433. if w_h_rate is not None:
  434. top_2_w_h_rate_flag[i] = True
  435. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  436. # 视频来源为 二层兜底时,判断是否是横屏
  437. w_h_rate = redis_helper.get_score_with_value(
  438. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  439. if w_h_rate is not None:
  440. top_2_w_h_rate_flag[i] = True
  441. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  442. return videos
  443. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  444. # 记录横屏视频位置
  445. horizontal_video_index = []
  446. # 记录流量池视频位置
  447. flow_video_index = []
  448. # 记录置顶视频位置
  449. top_video_index = []
  450. for i, video in enumerate(videos):
  451. # 视频来源为置顶
  452. if video['pushFrom'] == config_.PUSH_FROM['top']:
  453. top_video_index.append(i)
  454. # 视频来源为流量池
  455. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  456. flow_video_index.append(i)
  457. # 视频来源为rov召回池 或 一层兜底
  458. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  459. w_h_rate = redis_helper.get_score_with_value(
  460. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  461. if w_h_rate is not None:
  462. horizontal_video_index.append(i)
  463. else:
  464. continue
  465. # 视频来源为 二层兜底
  466. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  467. w_h_rate = redis_helper.get_score_with_value(
  468. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  469. if w_h_rate is not None:
  470. horizontal_video_index.append(i)
  471. else:
  472. continue
  473. # 重新排序
  474. top2_index = []
  475. for i in range(2):
  476. if i in top_video_index:
  477. top2_index.append(i)
  478. elif i in flow_video_index:
  479. top2_index.append(i)
  480. flow_video_index.remove(i)
  481. elif i in horizontal_video_index:
  482. top2_index.append(i)
  483. horizontal_video_index.remove(i)
  484. elif len(horizontal_video_index) > 0:
  485. # 调整横屏视频到第一位
  486. top2_index.append(horizontal_video_index[0])
  487. # 从横屏位置记录中移除
  488. horizontal_video_index.pop(0)
  489. elif i == 0:
  490. return videos
  491. # 重排
  492. flow_result = [videos[i] for i in flow_video_index]
  493. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  494. top2_result = []
  495. for i, j in enumerate(top2_index):
  496. item = videos[j]
  497. if i != j:
  498. # 修改abCode
  499. item['abCode'] = config_.AB_CODE['w_h_rate']
  500. top2_result.append(item)
  501. new_rank_result = top2_result
  502. for i in range(len(top2_index), len(videos)):
  503. if i in flow_video_index:
  504. new_rank_result.append(flow_result[0])
  505. flow_result.pop(0)
  506. else:
  507. new_rank_result.append(other_result[0])
  508. other_result.pop(0)
  509. return new_rank_result
  510. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  511. """
  512. 视频分发排序 - 包含老视频, 老视频插入固定位置
  513. :param rank_result: 排序后的结果
  514. :param size: 请求数
  515. :param old_video_index: 老视频插入的位置索引,默认为2
  516. :return: new_rank_result
  517. """
  518. if not old_video_recall:
  519. return rank_result
  520. if not rank_result:
  521. return old_video_recall[:size]
  522. # 视频去重
  523. rank_video_ids = [item['videoId'] for item in rank_result]
  524. old_video_remove = []
  525. for old_video in old_video_recall:
  526. if old_video['videoId'] in rank_video_ids:
  527. old_video_remove.append(old_video)
  528. for item in old_video_remove:
  529. old_video_recall.remove(item)
  530. if not old_video_recall:
  531. return rank_result
  532. # 插入老视频
  533. # 随机获取一个视频
  534. ind = random.randint(0, len(old_video_recall) - 1)
  535. old_video = old_video_recall[ind]
  536. # 插入
  537. if len(rank_result) < top_K:
  538. new_rank_result = rank_result + [old_video]
  539. else:
  540. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  541. if len(new_rank_result) > size:
  542. # 判断后两位视频来源
  543. push_from_1 = new_rank_result[-1]['pushFrom']
  544. push_from_2 = new_rank_result[-2]['pushFrom']
  545. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  546. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  547. return new_rank_result[:size]
  548. def video_new_rank2(data, size, top_K, flow_pool_P, ab_code, mid, exp_config=None, env_dict=None):
  549. """
  550. 视频分发排序
  551. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  552. :param size: 请求数
  553. :param top_K: 保证topK为召回池视频 type-int
  554. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  555. :return: rank_result
  556. """
  557. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  558. return [], 0
  559. #全量的是vlog,票圈精选, 334,60057,
  560. # 60054: simrecall,
  561. pre_str = "k_p2:"
  562. rov_recall_rank = data['rov_pool_recall']
  563. #call rank service
  564. #flag_call_service = 0
  565. sort_index = 0
  566. if exp_config and "sort_flag" in exp_config:
  567. sort_index = exp_config["sort_flag"]
  568. print("sort_index:", sort_index)
  569. redisObj = RedisHelper()
  570. vidKeys = []
  571. rec_recall_item_list = []
  572. rec_recall_vid_list = []
  573. day_vidKeys = []
  574. hour_vidKeys = []
  575. pre_day_str = "v_ctr:"
  576. pre_hour_str = "v_hour_ctr:"
  577. for recall_item in data['rov_pool_recall']:
  578. try:
  579. vid = int(recall_item.get("videoId", 0))
  580. rec_recall_vid_list.append(vid)
  581. rec_recall_item_list.append(recall_item)
  582. vidKeys.append(pre_str + str(vid))
  583. day_vidKeys.append(pre_day_str+str(vid))
  584. hour_vidKeys.append(pre_hour_str+str(vid))
  585. except:
  586. continue
  587. video_scores = redisObj.get_batch_key(vidKeys)
  588. if (ab_code == 60066 or ab_code == 60069 or ab_code == 60070 or ab_code == 60071) and len(rec_recall_vid_list)>0:
  589. video_static_info = redisObj.get_batch_key(day_vidKeys)
  590. video_hour_static_info = redisObj.get_batch_key(hour_vidKeys)
  591. #print("env_dict:", env_dict)
  592. feature_dict = get_featurs(mid, data, size, top_K, flow_pool_P, rec_recall_vid_list,env_dict, video_static_info, video_hour_static_info)
  593. score_result = get_tf_serving_sores(feature_dict)
  594. if video_scores and len(video_scores)>0 and rec_recall_item_list and score_result and len(score_result) > 0\
  595. and len(score_result) == len(rec_recall_item_list) and len(video_scores)== len(score_result):
  596. for i in range(len(score_result)):
  597. try:
  598. if video_scores[i] is None and len(score_result[i])>0:
  599. return_score = 0.000000001
  600. # sore_index :10 = model score
  601. if sort_index == 10:
  602. total_score = score_result[i][0]
  603. else:
  604. total_score = return_score * score_result[i][0]
  605. rec_recall_item_list[i]['sort_score'] = total_score
  606. else:
  607. video_score_str = json.loads(video_scores[i])
  608. # sore_index :10 = model score
  609. if sort_index == 10:
  610. total_score = score_result[i][0]
  611. else:
  612. if len(video_score_str)>= sort_index and len(video_score_str)>0:
  613. return_score = video_score_str[sort_index]
  614. else:
  615. return_score = 0.000000001
  616. total_score = return_score * score_result[i][0]
  617. rec_recall_item_list[i]['sort_score'] = total_score
  618. print("total_score:", total_score, " model score :", score_result[i][0], "return_score:", return_score)
  619. except Exception:
  620. if sort_index == 10:
  621. total_score = 0.00000001
  622. else:
  623. return_score = 0.000000001
  624. total_score = return_score * 0.00000001
  625. rec_recall_item_list[i]['sort_score'] = total_score
  626. rec_recall_item_list[i]['flag_call_service'] = 1
  627. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  628. else:
  629. rov_recall_rank = sup_rank(video_scores, rec_recall_item_list)
  630. else:
  631. if video_scores and len(rec_recall_item_list) > 0 and len(video_scores)>0:
  632. for i in range(len(video_scores)):
  633. try:
  634. if video_scores[i] is None:
  635. rec_recall_item_list[i]['sort_score'] = 0.0
  636. else:
  637. video_score_str = json.loads(video_scores[i])
  638. # print("video_score_str:", video_score_str)
  639. rec_recall_item_list[i]['sort_score'] = video_score_str[0]
  640. except Exception:
  641. rec_recall_item_list[i]['sort_score'] = 0.0
  642. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  643. #print(rov_recall_rank)
  644. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  645. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  646. top_K=top_K)
  647. rank_result = []
  648. rank_set = set('')
  649. # 从ROV召回池中获取top k
  650. if len(rov_recall_rank) > 0:
  651. rank_result.extend(rov_recall_rank[:top_K])
  652. rov_recall_rank = rov_recall_rank[top_K:]
  653. else:
  654. rank_result.extend(flow_recall_rank[:top_K])
  655. flow_recall_rank = flow_recall_rank[top_K:]
  656. # 按概率 p 及score排序获取 size - k 个视频
  657. flow_num = 0
  658. flowConfig = 0
  659. # 本段代码控制流量池,通过实验传参,现不动
  660. if flowConfig == 1 and len(rov_recall_rank) > 0:
  661. for recall_item in rank_result:
  662. flow_recall_name = recall_item.get("flowPool", '')
  663. flow_num = flow_num + 1
  664. all_recall_rank = rov_recall_rank + flow_recall_rank
  665. if flow_num > 0:
  666. rank_result.extend(all_recall_rank[:size - top_K])
  667. return rank_result, flow_num
  668. else:
  669. i = 0
  670. while i < size - top_K:
  671. # 随机生成[0, 1)浮点数
  672. rand = random.random()
  673. # log_.info('rand: {}'.format(rand))
  674. if rand < flow_pool_P:
  675. if flow_recall_rank:
  676. rank_result.append(flow_recall_rank[0])
  677. flow_recall_rank.remove(flow_recall_rank[0])
  678. else:
  679. rank_result.extend(rov_recall_rank[:size - top_K - i])
  680. return rank_result[:size], flow_num
  681. else:
  682. if rov_recall_rank:
  683. rank_result.append(rov_recall_rank[0])
  684. rov_recall_rank.remove(rov_recall_rank[0])
  685. else:
  686. rank_result.extend(flow_recall_rank[:size - top_K - i])
  687. return rank_result[:size], flow_num
  688. i += 1
  689. else:
  690. i = 0
  691. while i < size - top_K:
  692. # 随机生成[0, 1)浮点数
  693. rand = random.random()
  694. # log_.info('rand: {}'.format(rand))
  695. if rand < flow_pool_P:
  696. if flow_recall_rank:
  697. rank_result.append(flow_recall_rank[0])
  698. flow_recall_rank.remove(flow_recall_rank[0])
  699. else:
  700. rank_result.extend(rov_recall_rank[:size - top_K - i])
  701. return rank_result[:size], flow_num
  702. else:
  703. if rov_recall_rank:
  704. rank_result.append(rov_recall_rank[0])
  705. rov_recall_rank.remove(rov_recall_rank[0])
  706. else:
  707. rank_result.extend(flow_recall_rank[:size - top_K - i])
  708. return rank_result[:size], flow_num
  709. i += 1
  710. return rank_result[:size], flow_num
  711. # 排序服务兜底
  712. def sup_rank(video_scores, recall_list):
  713. if video_scores and len(recall_list) > 0:
  714. for i in range(len(video_scores)):
  715. try:
  716. if video_scores[i] is None:
  717. recall_list[i]['sort_score'] = 0.0
  718. else:
  719. video_score_str = json.loads(video_scores[i])
  720. recall_list[i]['flag_call_service'] = 0
  721. recall_list[i]['sort_score'] = video_score_str[0]
  722. except Exception:
  723. recall_list[i]['sort_score'] = 0.0
  724. rov_recall_rank = sorted(recall_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  725. #print("rov_recall_rank:", rov_recall_rank)
  726. else:
  727. rov_recall_rank = recall_list
  728. return rov_recall_rank
  729. def video_sanke_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  730. """
  731. 视频分发排序
  732. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  733. :param size: 请求数
  734. :param top_K: 保证topK为召回池视频 type-int
  735. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  736. :return: rank_result
  737. """
  738. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  739. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  740. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  741. return [], 0
  742. # 地域分组小时级规则更新数据
  743. recall_dict = {}
  744. region_h_recall = [item for item in data['rov_pool_recall']
  745. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  746. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  747. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  748. # 地域分组小时级更新24h规则更新数据
  749. region_24h_recall = [item for item in data['rov_pool_recall']
  750. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  751. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  752. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  753. # 相对24h规则更新数据
  754. rule_24h_recall = [item for item in data['rov_pool_recall']
  755. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  756. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  757. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  758. # 相对24h规则筛选后剩余更新数据
  759. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  760. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  761. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  762. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  763. hot_recall = []
  764. w2v_recall =[]
  765. sim_recall = []
  766. u2u2i_recall = []
  767. if ab_Code==60058:
  768. if len(data['u2i_recall'])>0:
  769. hot_recall = sorted(data['u2i_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  770. recall_dict['u2i_recall'] = hot_recall
  771. elif ab_Code==60059:
  772. if len(data['w2v_recall'])>0:
  773. recall_dict['w2v_recall'] = data['w2v_recall']
  774. else:
  775. recall_dict['w2v_recall'] = w2v_recall
  776. elif ab_Code==60061 or ab_Code==60063:
  777. if len(data['sim_recall'])>0:
  778. recall_dict['sim_recall'] = data['sim_recall']
  779. else:
  780. recall_dict['sim_recall'] = sim_recall
  781. elif ab_Code==60062:
  782. if len(data['u2u2i_recall'])>0:
  783. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  784. else:
  785. recall_dict['u2u2i_recall'] = u2u2i_recall
  786. recall_list = [('rov_recall_region_h',1, 1),('rov_recall_region_h',0.5, 1),('rov_recall_region_24h',1,1),
  787. ('u2i_recall',0.5,1), ('w2v_recall',0.5,1),('rov_recall_24h',1,1), ('rov_recall_24h_dup',0.5,1)]
  788. if exp_config and exp_config['recall_list']:
  789. recall_list = exp_config['recall_list']
  790. #print("recall_config:", recall_list)
  791. rov_recall_rank = []
  792. select_ids = set('')
  793. for i in range(3):
  794. if len(rov_recall_rank)>8:
  795. break
  796. for per_recall_item in recall_list:
  797. per_recall_name = per_recall_item[0]
  798. per_recall_freq = per_recall_item[1]
  799. per_limt_num = per_recall_item[2]
  800. rand_num = random.random()
  801. #print(recall_dict[per_recall_name])
  802. if rand_num<per_recall_freq and per_recall_name in recall_dict:
  803. per_recall = recall_dict[per_recall_name]
  804. #print("per_recall_item:", per_recall_item)
  805. cur_recall_num = 0
  806. for recall_item in per_recall:
  807. vid = recall_item['videoId']
  808. if vid in select_ids:
  809. continue
  810. rov_recall_rank.append(recall_item)
  811. select_ids.add(vid)
  812. cur_recall_num+=1
  813. if cur_recall_num>=per_limt_num:
  814. break
  815. # print("rov_recall_rank:")
  816. # print(rov_recall_rank)
  817. #rov_recall_rank = region_h_recall_rank + region_24h_recall_rank + \
  818. # rule_24h_recall_rank + rule_24h_dup_recall_rank
  819. # 流量池
  820. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  821. # 对各路召回的视频进行去重
  822. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  823. top_K=top_K)
  824. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  825. # rov_recall_rank, flow_recall_rank))
  826. # rank_result = relevant_recall_rank
  827. rank_result = []
  828. # 从ROV召回池中获取top k
  829. if len(rov_recall_rank) > 0:
  830. rank_result.extend(rov_recall_rank[:top_K])
  831. rov_recall_rank = rov_recall_rank[top_K:]
  832. else:
  833. rank_result.extend(flow_recall_rank[:top_K])
  834. flow_recall_rank = flow_recall_rank[top_K:]
  835. flow_num = 0
  836. flowConfig =0
  837. if exp_config and exp_config['flowConfig']:
  838. flowConfig = exp_config['flowConfig']
  839. if flowConfig == 1 and len(rov_recall_rank) > 0:
  840. rank_result.extend(rov_recall_rank[:top_K])
  841. for recall_item in rank_result:
  842. flow_recall_name = recall_item.get("flowPool", '')
  843. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  844. flow_num = flow_num + 1
  845. all_recall_rank = rov_recall_rank + flow_recall_rank
  846. if flow_num > 0:
  847. rank_result.extend(all_recall_rank[:size - top_K])
  848. return rank_result[:size], flow_num
  849. else:
  850. # 按概率 p 及score排序获取 size - k 个视频
  851. i = 0
  852. while i < size - top_K:
  853. # 随机生成[0, 1)浮点数
  854. rand = random.random()
  855. # log_.info('rand: {}'.format(rand))
  856. if rand < flow_pool_P:
  857. if flow_recall_rank:
  858. rank_result.append(flow_recall_rank[0])
  859. flow_recall_rank.remove(flow_recall_rank[0])
  860. else:
  861. rank_result.extend(rov_recall_rank[:size - top_K - i])
  862. return rank_result[:size], flow_num
  863. else:
  864. if rov_recall_rank:
  865. rank_result.append(rov_recall_rank[0])
  866. rov_recall_rank.remove(rov_recall_rank[0])
  867. else:
  868. rank_result.extend(flow_recall_rank[:size - top_K - i])
  869. return rank_result[:size], flow_num
  870. i += 1
  871. else:
  872. # 按概率 p 及score排序获取 size - k 个视频
  873. i = 0
  874. while i < size - top_K:
  875. # 随机生成[0, 1)浮点数
  876. rand = random.random()
  877. # log_.info('rand: {}'.format(rand))
  878. if rand < flow_pool_P:
  879. if flow_recall_rank:
  880. rank_result.append(flow_recall_rank[0])
  881. flow_recall_rank.remove(flow_recall_rank[0])
  882. else:
  883. rank_result.extend(rov_recall_rank[:size - top_K - i])
  884. return rank_result[:size], flow_num
  885. else:
  886. if rov_recall_rank:
  887. rank_result.append(rov_recall_rank[0])
  888. rov_recall_rank.remove(rov_recall_rank[0])
  889. else:
  890. rank_result.extend(flow_recall_rank[:size - top_K - i])
  891. return rank_result[:size],flow_num
  892. i += 1
  893. return rank_result[:size], flow_num
  894. def video_sank_pos_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  895. """
  896. 视频分发排序
  897. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  898. :param size: 请求数
  899. :param top_K: 保证topK为召回池视频 type-int
  900. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  901. :return: rank_result
  902. """
  903. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  904. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  905. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  906. return [], 0
  907. # 地域分组小时级规则更新数据
  908. recall_dict = {}
  909. region_h_recall = [item for item in data['rov_pool_recall']
  910. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  911. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  912. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  913. # 地域分组小时级更新24h规则更新数据
  914. region_24h_recall = [item for item in data['rov_pool_recall']
  915. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  916. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  917. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  918. # 相对24h规则更新数据
  919. rule_24h_recall = [item for item in data['rov_pool_recall']
  920. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  921. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  922. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  923. # 相对24h规则筛选后剩余更新数据
  924. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  925. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  926. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  927. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  928. u2i_recall = []
  929. u2i_play_recall = []
  930. w2v_recall =[]
  931. sim_recall = []
  932. u2u2i_recall = []
  933. return_video_recall = []
  934. #print("")
  935. if ab_Code==60058:
  936. if len(data['u2i_recall'])>0:
  937. recall_dict['u2i_recall'] = data['u2i_recall']
  938. else:
  939. recall_dict['u2i_recall'] = u2i_recall
  940. if len(data['u2i_play_recall']) > 0:
  941. recall_dict['u2i_play_recall'] = data['u2i_play_recall']
  942. else:
  943. recall_dict['u2i_play_recall'] = u2i_play_recall
  944. elif ab_Code==60059:
  945. if len(data['w2v_recall'])>0:
  946. recall_dict['w2v_recall'] = data['w2v_recall']
  947. else:
  948. recall_dict['w2v_recall'] = w2v_recall
  949. elif ab_Code==60061 or ab_Code==60063:
  950. if len(data['sim_recall'])>0:
  951. recall_dict['sim_recall'] = data['sim_recall']
  952. else:
  953. recall_dict['sim_recall'] = sim_recall
  954. elif ab_Code==60062:
  955. if len(data['u2u2i_recall'])>0:
  956. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  957. else:
  958. recall_dict['u2u2i_recall'] = u2u2i_recall
  959. elif ab_Code==60064:
  960. if len(data['return_video_recall'])>0:
  961. recall_dict['return_video_recall'] = data['return_video_recall']
  962. else:
  963. recall_dict['return_video_recall'] = return_video_recall
  964. recall_pos1 = [('rov_recall_region_h',0, 0.98),('rov_recall_24h',0.98, 1),('rov_recall_region_24h',0,1),
  965. ('rov_recall_24h',0,1), ('rov_recall_24h_dup',0,1)]
  966. recall_pos2 = [('rov_recall_region_h',0,0.98),('rov_recall_24h',0.98,1),('rov_recall_region_24h',0,1),
  967. ('rov_recall_24h',0,1),('rov_recall_24h_dup',0,1)]
  968. recall_pos3 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0.98,1), ('rov_recall_region_24h', 0,1),
  969. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  970. recall_pos4 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0,0.02), ('rov_recall_region_24h', 0,1),
  971. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  972. if exp_config and 'recall_pos1' in exp_config \
  973. and 'recall_pos2' in exp_config \
  974. and 'recall_pos3' in exp_config \
  975. and 'recall_pos4' in exp_config :
  976. recall_pos1 = exp_config['recall_pos1']
  977. recall_pos2 = exp_config['recall_pos2']
  978. recall_pos3 = exp_config['recall_pos3']
  979. recall_pos4 = exp_config['recall_pos4']
  980. #print("recall_config:", recall_pos1)
  981. rov_recall_rank = []
  982. recall_list = []
  983. recall_list.append(recall_pos1)
  984. recall_list.append(recall_pos2)
  985. recall_list.append(recall_pos3)
  986. recall_list.append(recall_pos4)
  987. select_ids = set('')
  988. recall_num_limit_dict = {}
  989. if exp_config and 'recall_num_limit' in exp_config:
  990. recall_num_limit_dict = exp_config['recall_num_limit']
  991. exp_recall_dict = {}
  992. #index_pos = 0
  993. for j in range(3):
  994. if len(rov_recall_rank)>12:
  995. break
  996. # choose pos
  997. for recall_pos_config in recall_list:
  998. rand_num = random.random()
  999. index_pos = 0
  1000. # choose pos recall
  1001. for per_recall_item in recall_pos_config:
  1002. if index_pos == 1:
  1003. break
  1004. if len(per_recall_item)<3:
  1005. continue
  1006. per_recall_name = per_recall_item[0]
  1007. per_recall_min = float(per_recall_item[1])
  1008. per_recall_max = float(per_recall_item[2])
  1009. per_recall_num = exp_recall_dict.get(per_recall_name, 0)
  1010. per_recall_total_num = recall_num_limit_dict.get(per_recall_name, 0)
  1011. # recall set total num
  1012. if len(recall_num_limit_dict)>0 and per_recall_total_num>0 and per_recall_num>= per_recall_total_num:
  1013. continue
  1014. if rand_num >= per_recall_min and rand_num < per_recall_max and per_recall_name in recall_dict:
  1015. per_recall = recall_dict[per_recall_name]
  1016. for recall_item in per_recall:
  1017. vid = recall_item['videoId']
  1018. if vid in select_ids:
  1019. continue
  1020. recall_item['rand'] = rand_num
  1021. rov_recall_rank.append(recall_item)
  1022. select_ids.add(vid)
  1023. if per_recall_name in exp_recall_dict:
  1024. exp_recall_dict[per_recall_name] +=1
  1025. else:
  1026. exp_recall_dict[per_recall_name] = 1
  1027. index_pos = 1
  1028. break
  1029. #print("rov_recall_rank:", rov_recall_rank)
  1030. if len(rov_recall_rank)<4:
  1031. rov_doudi_rank = region_h_recall_rank + sim_recall + u2i_recall + u2u2i_recall + w2v_recall +return_video_recall+u2i_play_recall+ region_24h_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank
  1032. for recall_item in rov_doudi_rank:
  1033. vid = recall_item['videoId']
  1034. if vid in select_ids:
  1035. continue
  1036. rov_recall_rank.append(recall_item)
  1037. select_ids.add(vid)
  1038. if len(rov_recall_rank)>12:
  1039. break
  1040. # print("rov_recall_rank:")
  1041. #print(rov_recall_rank)
  1042. # 流量池
  1043. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  1044. # 对各路召回的视频进行去重
  1045. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  1046. top_K=top_K)
  1047. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  1048. # rov_recall_rank, flow_recall_rank))
  1049. # rank_result = relevant_recall_rank
  1050. rank_result = []
  1051. # 从ROV召回池中获取top k
  1052. if len(rov_recall_rank) > 0:
  1053. rank_result.extend(rov_recall_rank[:top_K])
  1054. rov_recall_rank = rov_recall_rank[top_K:]
  1055. else:
  1056. rank_result.extend(flow_recall_rank[:top_K])
  1057. flow_recall_rank = flow_recall_rank[top_K:]
  1058. flow_num = 0
  1059. flowConfig =0
  1060. if exp_config and exp_config['flowConfig']:
  1061. flowConfig = exp_config['flowConfig']
  1062. if flowConfig == 1 and len(rov_recall_rank) > 0:
  1063. rank_result.extend(rov_recall_rank[:top_K])
  1064. for recall_item in rank_result:
  1065. flow_recall_name = recall_item.get("flowPool", '')
  1066. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  1067. flow_num = flow_num + 1
  1068. all_recall_rank = rov_recall_rank + flow_recall_rank
  1069. if flow_num > 0:
  1070. rank_result.extend(all_recall_rank[:size - top_K])
  1071. return rank_result[:size], flow_num
  1072. else:
  1073. # 按概率 p 及score排序获取 size - k 个视频
  1074. i = 0
  1075. while i < size - top_K:
  1076. # 随机生成[0, 1)浮点数
  1077. rand = random.random()
  1078. # log_.info('rand: {}'.format(rand))
  1079. if rand < flow_pool_P:
  1080. if flow_recall_rank:
  1081. rank_result.append(flow_recall_rank[0])
  1082. flow_recall_rank.remove(flow_recall_rank[0])
  1083. else:
  1084. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1085. return rank_result[:size], flow_num
  1086. else:
  1087. if rov_recall_rank:
  1088. rank_result.append(rov_recall_rank[0])
  1089. rov_recall_rank.remove(rov_recall_rank[0])
  1090. else:
  1091. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1092. return rank_result[:size], flow_num
  1093. i += 1
  1094. else:
  1095. # 按概率 p 及score排序获取 size - k 个视频
  1096. i = 0
  1097. while i < size - top_K:
  1098. # 随机生成[0, 1)浮点数
  1099. rand = random.random()
  1100. # log_.info('rand: {}'.format(rand))
  1101. if rand < flow_pool_P:
  1102. if flow_recall_rank:
  1103. rank_result.append(flow_recall_rank[0])
  1104. flow_recall_rank.remove(flow_recall_rank[0])
  1105. else:
  1106. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1107. return rank_result[:size], flow_num
  1108. else:
  1109. if rov_recall_rank:
  1110. rank_result.append(rov_recall_rank[0])
  1111. rov_recall_rank.remove(rov_recall_rank[0])
  1112. else:
  1113. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1114. return rank_result[:size],flow_num
  1115. i += 1
  1116. return rank_result[:size], flow_num
  1117. if __name__ == '__main__':
  1118. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1119. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1120. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1121. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1122. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1123. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1124. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1125. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1126. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1127. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  1128. res = video_rank_by_w_h_rate(videos=d_test)
  1129. for tmp in res:
  1130. print(tmp)