video_rank.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 最惊奇相关推荐相似视频
  23. relevant_recall = [item for item in data['rov_pool_recall']
  24. if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  25. relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  26. # 小时级更新数据
  27. h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  28. h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  29. # 地域分组小时级规则更新数据
  30. region_h_recall = [item for item in data['rov_pool_recall']
  31. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  32. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  33. # 地域分组小时级更新24h规则更新数据
  34. region_24h_recall = [item for item in data['rov_pool_recall']
  35. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  36. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 地域分组天级规则更新数据
  38. region_day_recall = [item for item in data['rov_pool_recall']
  39. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  40. region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  41. # 相对24h规则更新数据
  42. rule_24h_recall = [item for item in data['rov_pool_recall']
  43. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  44. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  45. # 天级规则更新数据
  46. day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  47. day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  48. # ROV召回池
  49. rov_initial_recall = [
  50. item for item in data['rov_pool_recall']
  51. if item.get('pushFrom') not in
  52. [config_.PUSH_FROM['top_video_relevant_appType_19'],
  53. config_.PUSH_FROM['rov_recall_h'],
  54. config_.PUSH_FROM['rov_recall_region_h'],
  55. config_.PUSH_FROM['rov_recall_region_24h'],
  56. config_.PUSH_FROM['rov_recall_region_day'],
  57. config_.PUSH_FROM['rov_recall_24h'],
  58. config_.PUSH_FROM['rov_recall_day']]
  59. ]
  60. rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  61. rov_recall_rank = h_recall_rank + \
  62. region_h_recall_rank + region_24h_recall_rank + region_day_recall_rank + \
  63. rule_24h_recall_rank + day_recall_rank + rov_initial_recall_rank
  64. # 流量池
  65. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  66. # 对各路召回的视频进行去重
  67. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  68. top_K=top_K)
  69. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  70. # rov_recall_rank, flow_recall_rank))
  71. rank_result = relevant_recall_rank
  72. # 从ROV召回池中获取top k
  73. if len(rov_recall_rank) > 0:
  74. rank_result.extend(rov_recall_rank[:top_K])
  75. rov_recall_rank = rov_recall_rank[top_K:]
  76. else:
  77. rank_result.extend(flow_recall_rank[:top_K])
  78. flow_recall_rank = flow_recall_rank[top_K:]
  79. # 按概率 p 及score排序获取 size - k 个视频
  80. i = 0
  81. while i < size - top_K:
  82. # 随机生成[0, 1)浮点数
  83. rand = random.random()
  84. # log_.info('rand: {}'.format(rand))
  85. if rand < flow_pool_P:
  86. if flow_recall_rank:
  87. rank_result.append(flow_recall_rank[0])
  88. flow_recall_rank.remove(flow_recall_rank[0])
  89. else:
  90. rank_result.extend(rov_recall_rank[:size - top_K - i])
  91. return rank_result[:size]
  92. else:
  93. if rov_recall_rank:
  94. rank_result.append(rov_recall_rank[0])
  95. rov_recall_rank.remove(rov_recall_rank[0])
  96. else:
  97. rank_result.extend(flow_recall_rank[:size - top_K - i])
  98. return rank_result[:size]
  99. i += 1
  100. return rank_result[:size]
  101. def remove_duplicate(rov_recall, flow_recall, top_K):
  102. """
  103. 对多路召回的视频去重
  104. 去重原则:
  105. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  106. :param rov_recall: ROV召回池-已排序
  107. :param flow_recall: 流量池-已排序
  108. :param top_K: 保证topK为召回池视频 type-int
  109. :return:
  110. """
  111. flow_recall_result = []
  112. rov_recall_remove = []
  113. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  114. # rov_recall topK
  115. for item in rov_recall[:top_K]:
  116. if item['videoId'] in flow_recall_video_ids:
  117. flow_recall_video_ids.remove(item['videoId'])
  118. # other
  119. for item in rov_recall[top_K:]:
  120. if item['videoId'] in flow_recall_video_ids:
  121. rov_recall_remove.append(item)
  122. # rov recall remove
  123. for item in rov_recall_remove:
  124. rov_recall.remove(item)
  125. # flow recall remove
  126. for item in flow_recall:
  127. if item['videoId'] in flow_recall_video_ids:
  128. flow_recall_result.append(item)
  129. return rov_recall, flow_recall_result
  130. def bottom_strategy(size, app_type, ab_code):
  131. """
  132. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  133. :param size: 需要获取的视频数
  134. :param app_type: 产品标识 type-int
  135. :param ab_code: abCode
  136. :return:
  137. """
  138. pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
  139. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  140. redis_helper = RedisHelper()
  141. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  142. if not data:
  143. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  144. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  145. # 二次兜底
  146. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
  147. return bottom_data
  148. # 视频状态过滤采用离线定时过滤方案
  149. # 状态过滤
  150. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  151. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  152. if len(data) > size:
  153. random_data = numpy.random.choice(data, size, False)
  154. else:
  155. random_data = data
  156. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  157. for item in random_data]
  158. return bottom_data
  159. def bottom_strategy_last(size, app_type, ab_code):
  160. """
  161. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  162. :param size: 需要获取的视频数
  163. :param app_type: 产品标识 type-int
  164. :param ab_code: abCode
  165. :return:
  166. """
  167. redis_helper = RedisHelper()
  168. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  169. random_data = numpy.random.choice(bottom_data, size * 30, False)
  170. # 视频状态过滤采用离线定时过滤方案
  171. # 状态过滤
  172. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  173. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  174. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  175. for video_id in random_data[:size]]
  176. return bottom_data
  177. def video_rank_by_w_h_rate(videos):
  178. """
  179. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  180. :param videos:
  181. :return:
  182. """
  183. redis_helper = RedisHelper()
  184. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  185. top_2_push_from_flag = [False, False]
  186. for i, video in enumerate(videos[:2]):
  187. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  188. top_2_push_from_flag[i] = True
  189. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  190. return videos
  191. # ##### 判断前两个视频是否为横屏
  192. top_2_w_h_rate_flag = [False, False]
  193. for i, video in enumerate(videos[:2]):
  194. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  195. # 视频来源为置顶 或 流量池时,不做判断
  196. top_2_w_h_rate_flag[i] = True
  197. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  198. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  199. w_h_rate = redis_helper.get_score_with_value(
  200. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  201. if w_h_rate is not None:
  202. top_2_w_h_rate_flag[i] = True
  203. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  204. # 视频来源为 二层兜底时,判断是否是横屏
  205. w_h_rate = redis_helper.get_score_with_value(
  206. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  207. if w_h_rate is not None:
  208. top_2_w_h_rate_flag[i] = True
  209. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  210. return videos
  211. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  212. # 记录横屏视频位置
  213. horizontal_video_index = []
  214. # 记录流量池视频位置
  215. flow_video_index = []
  216. # 记录置顶视频位置
  217. top_video_index = []
  218. for i, video in enumerate(videos):
  219. # 视频来源为置顶
  220. if video['pushFrom'] == config_.PUSH_FROM['top']:
  221. top_video_index.append(i)
  222. # 视频来源为流量池
  223. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  224. flow_video_index.append(i)
  225. # 视频来源为rov召回池 或 一层兜底
  226. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  227. w_h_rate = redis_helper.get_score_with_value(
  228. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  229. if w_h_rate is not None:
  230. horizontal_video_index.append(i)
  231. else:
  232. continue
  233. # 视频来源为 二层兜底
  234. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  235. w_h_rate = redis_helper.get_score_with_value(
  236. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  237. if w_h_rate is not None:
  238. horizontal_video_index.append(i)
  239. else:
  240. continue
  241. # 重新排序
  242. top2_index = []
  243. for i in range(2):
  244. if i in top_video_index:
  245. top2_index.append(i)
  246. elif i in flow_video_index:
  247. top2_index.append(i)
  248. flow_video_index.remove(i)
  249. elif i in horizontal_video_index:
  250. top2_index.append(i)
  251. horizontal_video_index.remove(i)
  252. elif len(horizontal_video_index) > 0:
  253. # 调整横屏视频到第一位
  254. top2_index.append(horizontal_video_index[0])
  255. # 从横屏位置记录中移除
  256. horizontal_video_index.pop(0)
  257. elif i == 0:
  258. return videos
  259. # 重排
  260. flow_result = [videos[i] for i in flow_video_index]
  261. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  262. top2_result = []
  263. for i, j in enumerate(top2_index):
  264. item = videos[j]
  265. if i != j:
  266. # 修改abCode
  267. item['abCode'] = config_.AB_CODE['w_h_rate']
  268. top2_result.append(item)
  269. new_rank_result = top2_result
  270. for i in range(len(top2_index), len(videos)):
  271. if i in flow_video_index:
  272. new_rank_result.append(flow_result[0])
  273. flow_result.pop(0)
  274. else:
  275. new_rank_result.append(other_result[0])
  276. other_result.pop(0)
  277. return new_rank_result
  278. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  279. """
  280. 视频分发排序 - 包含老视频, 老视频插入固定位置
  281. :param rank_result: 排序后的结果
  282. :param size: 请求数
  283. :param old_video_index: 老视频插入的位置索引,默认为2
  284. :return: new_rank_result
  285. """
  286. if not old_video_recall:
  287. return rank_result
  288. if not rank_result:
  289. return old_video_recall[:size]
  290. # 视频去重
  291. rank_video_ids = [item['videoId'] for item in rank_result]
  292. old_video_remove = []
  293. for old_video in old_video_recall:
  294. if old_video['videoId'] in rank_video_ids:
  295. old_video_remove.append(old_video)
  296. for item in old_video_remove:
  297. old_video_recall.remove(item)
  298. if not old_video_recall:
  299. return rank_result
  300. # 插入老视频
  301. # 随机获取一个视频
  302. ind = random.randint(0, len(old_video_recall) - 1)
  303. old_video = old_video_recall[ind]
  304. # 插入
  305. if len(rank_result) < top_K:
  306. new_rank_result = rank_result + [old_video]
  307. else:
  308. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  309. if len(new_rank_result) > size:
  310. # 判断后两位视频来源
  311. push_from_1 = new_rank_result[-1]['pushFrom']
  312. push_from_2 = new_rank_result[-2]['pushFrom']
  313. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  314. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  315. return new_rank_result[:size]
  316. if __name__ == '__main__':
  317. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  318. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  319. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  320. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  321. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  322. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  323. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  324. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  325. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  326. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  327. res = video_rank_by_w_h_rate(videos=d_test)
  328. for tmp in res:
  329. print(tmp)