recommend.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. import time
  2. import multiprocessing
  3. import traceback
  4. from datetime import datetime
  5. import config
  6. from log import Log
  7. from config import set_config
  8. from video_recall import PoolRecall
  9. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate
  10. from db_helper import RedisHelper
  11. import gevent
  12. from utils import FilterVideos
  13. import ast
  14. log_ = Log()
  15. config_ = set_config()
  16. def video_position_recommend(mid, uid, app_type, videos):
  17. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  18. # algo_type=algo_type, client_info=client_info)
  19. redis_helper = RedisHelper()
  20. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  21. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  22. if pos1_vids is not None:
  23. pos1_vids = ast.literal_eval(pos1_vids)
  24. if pos2_vids is not None:
  25. pos2_vids = ast.literal_eval(pos2_vids)
  26. pos1_vids = [int(i) for i in pos1_vids]
  27. pos2_vids = [int(i) for i in pos2_vids]
  28. filter_1 = FilterVideos(app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  29. filter_2 = FilterVideos(app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  30. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  31. gevent.joinall(t)
  32. filted_list = [i.get() for i in t]
  33. pos1_vids = filted_list[0]
  34. pos2_vids = filted_list[1]
  35. if pos1_vids is not None and len(pos1_vids) >0 :
  36. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  37. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  38. if pos2_vids is not None and len(pos2_vids) >0 :
  39. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  40. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  41. return videos[:10]
  42. def video_recommend(mid, uid, size, app_type, algo_type, client_info):
  43. """
  44. 首页线上推荐逻辑
  45. :param mid: mid type-string
  46. :param uid: uid type-string
  47. :param size: 请求视频数量 type-int
  48. :param app_type: 产品标识 type-int
  49. :param algo_type: 算法类型 type-string
  50. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  51. :return:
  52. """
  53. ab_code = config_.AB_CODE['initial']
  54. # ####### 多进程召回
  55. start_recall = time.time()
  56. # log_.info('====== recall')
  57. '''
  58. cores = multiprocessing.cpu_count()
  59. pool = multiprocessing.Pool(processes=cores)
  60. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  61. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  62. pool_list = [
  63. # rov召回池
  64. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  65. # 流量池
  66. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  67. ]
  68. recall_result_list = [p.get() for p in pool_list]
  69. pool.close()
  70. pool.join()
  71. '''
  72. recall_result_list = []
  73. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info)
  74. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  75. t = [gevent.spawn(pool_recall.rov_pool_recall, size), gevent.spawn(pool_recall.flow_pool_recall, size)]
  76. gevent.joinall(t)
  77. recall_result_list = [i.get() for i in t]
  78. end_recall = time.time()
  79. log_.info('mid: {}, uid: {}, recall: {}, execute time = {}ms'.format(
  80. mid, uid, recall_result_list, (end_recall - start_recall) * 1000))
  81. # ####### 排序
  82. start_rank = time.time()
  83. # log_.info('====== rank')
  84. data = {
  85. 'rov_pool_recall': recall_result_list[0],
  86. 'flow_pool_recall': recall_result_list[1]
  87. }
  88. rank_result = video_rank(data=data, size=size)
  89. end_rank = time.time()
  90. log_.info('mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  91. mid, uid, rank_result, (end_rank - start_rank) * 1000))
  92. if not rank_result:
  93. # 兜底策略
  94. # log_.info('====== bottom strategy')
  95. start_bottom = time.time()
  96. rank_result = bottom_strategy(size=size, app_type=app_type, ab_code=ab_code)
  97. end_bottom = time.time()
  98. log_.info('mid: {}, uid: {}, bottom strategy result: {}, execute time = {}ms'.format(
  99. mid, uid, rank_result, (end_bottom - start_bottom) * 1000))
  100. return rank_result, last_rov_recall_key
  101. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  102. """
  103. 对排序后的结果 按照AB实验进行对应的分组操作
  104. :param rank_result: 排序后的结果
  105. :param ab_code_list: 此次请求参与的 ab实验组
  106. :param app_type: 产品标识
  107. :param mid: mid
  108. :param uid: uid
  109. :param kwargs: 其他参数
  110. :return:
  111. """
  112. # ####### 视频宽高比AB实验
  113. # 对内容精选进行 视频宽高比分发实验
  114. if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  115. rank_result = video_rank_by_w_h_rate(videos=rank_result)
  116. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  117. app_type, mid, uid, rank_result))
  118. # 按position位置排序
  119. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  120. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  121. print('===========================')
  122. print(rank_result)
  123. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  124. app_type, mid, uid, rank_result))
  125. return rank_result
  126. def update_redis_data(result, app_type, mid, last_rov_recall_key):
  127. """
  128. 根据最终的排序结果更新相关redis数据
  129. :param result: 排序结果
  130. :param app_type: 产品标识
  131. :param mid: mid
  132. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  133. :return: None
  134. """
  135. # ####### redis数据刷新
  136. try:
  137. # log_.info('====== update redis')
  138. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  139. redis_helper = RedisHelper()
  140. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  141. preview_video_ids = [int(item['videoId']) for item in result]
  142. if preview_video_ids:
  143. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  144. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  145. log_.info('preview redis update success!')
  146. # 将此次获取的ROV召回池config_.K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  147. rov_recall_video = [item['videoId'] for item in result[:config_.K]
  148. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  149. if len(rov_recall_video) > 0:
  150. if not redis_helper.get_score_with_value(key_name=config_.UPDATE_ROV_KEY_NAME, value=rov_recall_video[-1]):
  151. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1])
  152. log_.info('last video redis update success!')
  153. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  154. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  155. if flow_recall_video:
  156. update_local_distribute_count(flow_recall_video)
  157. log_.info('update local distribute count success!')
  158. except Exception as e:
  159. log_.error("update redis data fail!")
  160. log_.error(traceback.format_exc())
  161. def update_local_distribute_count(videos):
  162. """
  163. 更新本地分发数
  164. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  165. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  166. :return:
  167. """
  168. try:
  169. redis_helper = RedisHelper()
  170. for item in videos:
  171. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  172. # 本地记录的分发数 - 1
  173. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  174. # if redis_helper.key_exists(key_name=key_name):
  175. # # 该视频本地有记录,本地记录的分发数 - 1
  176. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  177. # else:
  178. # # 该视频本地无记录,接口获取的分发数 - 1
  179. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  180. except Exception as e:
  181. log_.error('update_local_distribute_count error...')
  182. log_.error(traceback.format_exc())
  183. def video_homepage_recommend(mid, uid, size, app_type, algo_type, client_info):
  184. """
  185. 首页线上推荐逻辑
  186. :param mid: mid type-string
  187. :param uid: uid type-string
  188. :param size: 请求视频数量 type-int
  189. :param app_type: 产品标识 type-int
  190. :param algo_type: 算法类型 type-string
  191. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  192. :return:
  193. """
  194. # 简单召回 - 排序 - 兜底
  195. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  196. algo_type=algo_type, client_info=client_info)
  197. # ab-test
  198. result = ab_test_op(rank_result=rank_result,
  199. ab_code_list=[config_.AB_CODE['w_h_rate'], config_.AB_CODE['position_insert']],
  200. app_type=app_type, mid=mid, uid=uid)
  201. # redis数据刷新
  202. update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key)
  203. return result
  204. def video_relevant_recommend(video_id, mid, uid, size, app_type):
  205. """
  206. 相关推荐逻辑
  207. :param video_id: 相关推荐的头部视频id
  208. :param mid: mid type-string
  209. :param uid: uid type-string
  210. :param size: 请求视频数量 type-int
  211. :param app_type: 产品标识 type-int
  212. :return: videos type-list
  213. """
  214. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type, algo_type='', client_info=None)
  215. # 简单召回 - 排序 - 兜底
  216. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  217. algo_type='', client_info=None)
  218. # ab-test
  219. result = ab_test_op(rank_result=rank_result,
  220. ab_code_list=[config_.AB_CODE['w_h_rate'], config_.AB_CODE['position_insert']],
  221. app_type=app_type, mid=mid, uid=uid, video_id=video_id)
  222. # redis数据刷新
  223. update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key)
  224. return result
  225. if __name__ == '__main__':
  226. videos = [{'videoId': '12345', 'flowPool': '133#442#2', 'distributeCount': 10}]
  227. update_local_distribute_count(videos)