123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- import random
- import numpy
- from log import Log
- from config import set_config
- from video_recall import PoolRecall
- from db_helper import RedisHelper
- from utils import FilterVideos, send_msg_to_feishu
- log_ = Log()
- config_ = set_config()
- def video_rank(data, size):
- """
- 视频分发排序
- :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
- :param size: 请求数
- :return: rank_result
- """
- if not data['rov_pool_recall'] and not data['flow_pool_recall']:
- return None
- # 将各路召回的视频按照score从大到小排序
- # ROV召回池
- rov_recall_rank = sorted(data['rov_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
- # 流量池
- flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
- # 对各路召回的视频进行去重
- rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank)
- # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
- # rov_recall_rank, flow_recall_rank))
- # 从ROV召回池中获取top k
- if len(rov_recall_rank) > 0:
- rank_result = rov_recall_rank[:config_.K]
- rov_recall_rank = rov_recall_rank[config_.K:]
- else:
- rank_result = flow_recall_rank[:config_.K]
- flow_recall_rank = flow_recall_rank[config_.K:]
- # 按概率 p 及score排序获取 size - k 个视频
- i = 0
- while i < size - config_.K:
- # 随机生成[0, 1)浮点数
- rand = random.random()
- # log_.info('rand: {}'.format(rand))
- if rand < config_.P:
- if flow_recall_rank:
- rank_result.append(flow_recall_rank[0])
- flow_recall_rank.remove(flow_recall_rank[0])
- else:
- rank_result.extend(rov_recall_rank[:size - config_.K - i])
- return rank_result
- else:
- if rov_recall_rank:
- rank_result.append(rov_recall_rank[0])
- rov_recall_rank.remove(rov_recall_rank[0])
- else:
- rank_result.extend(flow_recall_rank[:size - config_.K - i])
- return rank_result
- i += 1
- return rank_result
- def remove_duplicate(rov_recall, flow_recall):
- """
- 对多路召回的视频去重
- 去重原则:
- 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
- :param rov_recall: ROV召回池-已排序
- :param flow_recall: 流量池-已排序
- :return:
- """
- flow_recall_result = []
- rov_recall_remove = []
- flow_recall_video_ids = [item['videoId'] for item in flow_recall]
- # rov_recall topK
- for item in rov_recall[:config_.K]:
- if item['videoId'] in flow_recall_video_ids:
- flow_recall_video_ids.remove(item['videoId'])
- # other
- for item in rov_recall[config_.K:]:
- if item['videoId'] in flow_recall_video_ids:
- rov_recall_remove.append(item)
- # rov recall remove
- for item in rov_recall_remove:
- rov_recall.remove(item)
- # flow recall remove
- for item in flow_recall:
- if item['videoId'] in flow_recall_video_ids:
- flow_recall_result.append(item)
- return rov_recall, flow_recall_result
- def bottom_strategy(size, app_type, ab_code):
- """
- 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
- :param size: 需要获取的视频数
- :param app_type: 产品标识 type-int
- :param ab_code: abCode
- :return:
- """
- pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
- key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
- redis_helper = RedisHelper()
- data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
- if not data:
- log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
- send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
- # 二次兜底
- bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
- return bottom_data
- # 视频状态过滤采用离线定时过滤方案
- # 状态过滤
- # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
- # filtered_data = filter_videos.filter_video_status(video_ids=data)
- if len(data) > size:
- random_data = numpy.random.choice(data, size, False)
- else:
- random_data = data
- bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
- for item in random_data]
- return bottom_data
- def bottom_strategy_last(size, app_type, ab_code):
- """
- 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
- :param size: 需要获取的视频数
- :param app_type: 产品标识 type-int
- :param ab_code: abCode
- :return:
- """
- redis_helper = RedisHelper()
- bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
- random_data = numpy.random.choice(bottom_data, size * 30, False)
- # 视频状态过滤采用离线定时过滤方案
- # 状态过滤
- # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
- # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
- bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
- for video_id in random_data[:size]]
- return bottom_data
- def video_rank_by_w_h_rate(videos):
- """
- 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
- :param videos:
- :return:
- """
- redis_helper = RedisHelper()
- # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
- top_2_push_from_flag = [False, False]
- for i, video in enumerate(videos[:2]):
- if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
- top_2_push_from_flag[i] = True
- if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
- return videos
- # ##### 判断前两个视频是否为横屏
- top_2_w_h_rate_flag = [False, False]
- for i, video in enumerate(videos[:2]):
- if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
- # 视频来源为置顶 或 流量池时,不做判断
- top_2_w_h_rate_flag[i] = True
- elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
- # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
- w_h_rate = redis_helper.get_score_with_value(
- key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
- if w_h_rate is not None:
- top_2_w_h_rate_flag[i] = True
- elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
- # 视频来源为 二层兜底时,判断是否是横屏
- w_h_rate = redis_helper.get_score_with_value(
- key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
- if w_h_rate is not None:
- top_2_w_h_rate_flag[i] = True
- if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
- return videos
- # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
- # 记录横屏视频位置
- horizontal_video_index = []
- # 记录流量池视频位置
- flow_video_index = []
- # 记录置顶视频位置
- top_video_index = []
- for i, video in enumerate(videos):
- # 视频来源为置顶
- if video['pushFrom'] == config_.PUSH_FROM['top']:
- top_video_index.append(i)
- # 视频来源为流量池
- elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
- flow_video_index.append(i)
- # 视频来源为rov召回池 或 一层兜底
- elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
- w_h_rate = redis_helper.get_score_with_value(
- key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
- if w_h_rate is not None:
- horizontal_video_index.append(i)
- else:
- continue
- # 视频来源为 二层兜底
- elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
- w_h_rate = redis_helper.get_score_with_value(
- key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
- if w_h_rate is not None:
- horizontal_video_index.append(i)
- else:
- continue
- # 重新排序
- top2_index = []
- for i in range(2):
- if i in top_video_index:
- top2_index.append(i)
- elif i in flow_video_index:
- top2_index.append(i)
- flow_video_index.remove(i)
- elif i in horizontal_video_index:
- top2_index.append(i)
- horizontal_video_index.remove(i)
- elif len(horizontal_video_index) > 0:
- # 调整横屏视频到第一位
- top2_index.append(horizontal_video_index[0])
- # 从横屏位置记录中移除
- horizontal_video_index.pop(0)
- elif i == 0:
- return videos
- # 重排
- flow_result = [videos[i] for i in flow_video_index]
- other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
- top2_result = []
- for i, j in enumerate(top2_index):
- item = videos[j]
- if i != j:
- # 修改abCode
- item['abCode'] = config_.AB_CODE['w_h_rate']
- top2_result.append(item)
- new_rank_result = top2_result
- for i in range(len(top2_index), len(videos)):
- if i in flow_video_index:
- new_rank_result.append(flow_result[0])
- flow_result.pop(0)
- else:
- new_rank_result.append(other_result[0])
- other_result.pop(0)
- return new_rank_result
- if __name__ == '__main__':
- d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
- {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
- {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
- {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
- {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
- res = video_rank_by_w_h_rate(videos=d_test)
- for tmp in res:
- print(tmp)
|