video_rank.py 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. import json
  2. import random
  3. import numpy
  4. from log import Log
  5. from config import set_config
  6. from video_recall import PoolRecall
  7. from db_helper import RedisHelper
  8. from utils import FilterVideos, send_msg_to_feishu
  9. from rank_service import get_featurs, get_tf_serving_sores
  10. log_ = Log()
  11. config_ = set_config()
  12. def video_rank(data, size, top_K, flow_pool_P):
  13. """
  14. 视频分发排序
  15. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  16. :param size: 请求数
  17. :param top_K: 保证topK为召回池视频 type-int
  18. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  19. :return: rank_result
  20. """
  21. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  22. return []
  23. # 将各路召回的视频按照score从大到小排序
  24. # 最惊奇相关推荐相似视频
  25. # relevant_recall = [item for item in data['rov_pool_recall']
  26. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  27. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  28. # 最惊奇完整影视视频
  29. # whole_movies_recall = [item for item in data['rov_pool_recall']
  30. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  31. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  32. # 最惊奇影视解说视频
  33. # talk_videos_recall = [item for item in data['rov_pool_recall']
  34. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  35. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  36. # 小时级更新数据
  37. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  38. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  39. # 相对30天天级规则更新数据
  40. day_30_recall = [item for item in data['rov_pool_recall']
  41. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  42. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  43. # 地域分组小时级规则更新数据
  44. region_h_recall = [item for item in data['rov_pool_recall']
  45. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  46. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  47. # 地域分组小时级更新24h规则更新数据
  48. region_24h_recall = [item for item in data['rov_pool_recall']
  49. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  50. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  51. # 地域分组天级规则更新数据
  52. # region_day_recall = [item for item in data['rov_pool_recall']
  53. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  54. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  55. # 相对24h规则更新数据
  56. rule_24h_recall = [item for item in data['rov_pool_recall']
  57. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  58. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  59. # 相对24h规则筛选后剩余更新数据
  60. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  61. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  62. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  63. # 相对48h规则更新数据
  64. rule_48h_recall = [item for item in data['rov_pool_recall']
  65. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  66. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  67. # 相对48h规则筛选后剩余更新数据
  68. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  69. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  70. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  71. # 天级规则更新数据
  72. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  73. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  74. # ROV召回池
  75. # rov_initial_recall = [
  76. # item for item in data['rov_pool_recall']
  77. # if item.get('pushFrom') not in
  78. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  79. # config_.PUSH_FROM['rov_recall_h'],
  80. # config_.PUSH_FROM['rov_recall_region_h'],
  81. # config_.PUSH_FROM['rov_recall_region_24h'],
  82. # config_.PUSH_FROM['rov_recall_region_day'],
  83. # config_.PUSH_FROM['rov_recall_24h'],
  84. # config_.PUSH_FROM['rov_recall_24h_dup'],
  85. # config_.PUSH_FROM['rov_recall_48h'],
  86. # config_.PUSH_FROM['rov_recall_48h_dup'],
  87. # config_.PUSH_FROM['rov_recall_day'],
  88. # config_.PUSH_FROM['whole_movies'],
  89. # config_.PUSH_FROM['talk_videos']]
  90. # ]
  91. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  92. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  93. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  94. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  95. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  96. # day_recall_rank + rov_initial_recall_rank
  97. rov_recall_rank = day_30_recall_rank + \
  98. region_h_recall_rank + region_24h_recall_rank + \
  99. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  100. rule_48h_recall_rank + rule_48h_dup_recall_rank
  101. # 流量池
  102. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  103. # 对各路召回的视频进行去重
  104. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  105. top_K=top_K)
  106. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  107. # rov_recall_rank, flow_recall_rank))
  108. # rank_result = relevant_recall_rank
  109. rank_result = []
  110. # 从ROV召回池中获取top k
  111. if len(rov_recall_rank) > 0:
  112. rank_result.extend(rov_recall_rank[:top_K])
  113. rov_recall_rank = rov_recall_rank[top_K:]
  114. else:
  115. rank_result.extend(flow_recall_rank[:top_K])
  116. flow_recall_rank = flow_recall_rank[top_K:]
  117. # 按概率 p 及score排序获取 size - k 个视频
  118. i = 0
  119. while i < size - top_K:
  120. # 随机生成[0, 1)浮点数
  121. rand = random.random()
  122. # log_.info('rand: {}'.format(rand))
  123. if rand < flow_pool_P:
  124. if flow_recall_rank:
  125. rank_result.append(flow_recall_rank[0])
  126. flow_recall_rank.remove(flow_recall_rank[0])
  127. else:
  128. rank_result.extend(rov_recall_rank[:size - top_K - i])
  129. return rank_result[:size]
  130. else:
  131. if rov_recall_rank:
  132. rank_result.append(rov_recall_rank[0])
  133. rov_recall_rank.remove(rov_recall_rank[0])
  134. else:
  135. rank_result.extend(flow_recall_rank[:size - top_K - i])
  136. return rank_result[:size]
  137. i += 1
  138. return rank_result[:size]
  139. def video_new_rank(videoIds, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  140. """
  141. 视频分发排序
  142. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  143. :param size: 请求数
  144. :param top_K: 保证topK为召回池视频 type-int
  145. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  146. :return: rank_result
  147. """
  148. add_flow_set = set('')
  149. if not videoIds or len(videoIds)==0:
  150. return [], add_flow_set
  151. redisObj = RedisHelper()
  152. vidKeys = []
  153. for vid in videoIds:
  154. vidKeys.append("k_p:"+str(vid))
  155. #print("vidKeys:", vidKeys)
  156. video_scores = redisObj.get_batch_key(vidKeys)
  157. #print(video_scores)
  158. video_items = []
  159. for i in range(len(video_scores)):
  160. try:
  161. #print(video_scores[i])
  162. if video_scores[i] is None:
  163. video_items.append((videoIds[i], 0.0))
  164. else:
  165. video_score_str = json.loads(video_scores[i])
  166. #print("video_score_str:",video_score_str)
  167. video_items.append((videoIds[i], video_score_str[0]))
  168. except Exception:
  169. video_items.append((videoIds[i], 0.0))
  170. sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  171. #print("sort_items:", sort_items)
  172. rov_recall_rank = sort_items
  173. fast_flow_recall_rank = []
  174. flow_recall_rank = []
  175. for item in sort_items:
  176. if item[0] in fast_flow_set:
  177. fast_flow_recall_rank.append(item)
  178. elif item[0] in flow_set:
  179. flow_recall_rank.append(item)
  180. # all flow result
  181. all_flow_recall_rank = fast_flow_recall_rank+flow_recall_rank
  182. rank_result = []
  183. rank_set = set('')
  184. # 从ROV召回池中获取top k
  185. if len(rov_recall_rank) > 0:
  186. rank_result.extend(rov_recall_rank[:top_K])
  187. rov_recall_rank = rov_recall_rank[top_K:]
  188. else:
  189. rank_result.extend(all_flow_recall_rank[:top_K])
  190. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  191. for rank_item in rank_result:
  192. rank_set.add(rank_item[0])
  193. #print("rank_result:", rank_result)
  194. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  195. i = 0
  196. left_quato = size - top_K
  197. j = 0
  198. jj = 0
  199. while i < left_quato and (j<len(all_flow_recall_rank) or jj<len(rov_recall_rank)):
  200. # 随机生成[0, 1)浮点数
  201. rand = random.random()
  202. # log_.info('rand: {}'.format(rand))
  203. if rand < flow_pool_P:
  204. for flow_item in all_flow_recall_rank:
  205. j+=1
  206. if flow_item[0] in rank_set:
  207. continue
  208. else:
  209. rank_result.append(flow_item)
  210. rank_set.add(flow_item[0])
  211. add_flow_set.add(flow_item[0])
  212. i += 1
  213. if i>= left_quato:
  214. break
  215. else:
  216. for recall_item in rov_recall_rank:
  217. jj+=1
  218. if recall_item[0] in rank_set:
  219. continue
  220. else:
  221. rank_result.append(recall_item)
  222. rank_set.add(recall_item[0])
  223. i += 1
  224. if i>= left_quato:
  225. break
  226. #print("rank_result:", rank_result)
  227. #print("add_flow_set:", add_flow_set)
  228. return rank_result[:size], add_flow_set
  229. def refactor_video_rank(rov_recall_rank, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  230. """
  231. 视频分发排序
  232. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  233. :param size: 请求数
  234. :param top_K: 保证topK为召回池视频 type-int
  235. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  236. :return: rank_result
  237. """
  238. if not rov_recall_rank or len(rov_recall_rank) == 0:
  239. return []
  240. fast_flow_recall_rank = []
  241. flow_recall_rank = []
  242. for item in rov_recall_rank:
  243. vid = item.get('videoId', 0)
  244. #print(item)
  245. if vid in fast_flow_set:
  246. fast_flow_recall_rank.append(item)
  247. elif vid in flow_set:
  248. flow_recall_rank.append(item)
  249. # all flow result
  250. all_flow_recall_rank = fast_flow_recall_rank + flow_recall_rank
  251. rank_result = []
  252. rank_set = set('')
  253. # 从ROV召回池中获取top k
  254. if len(rov_recall_rank) > 0:
  255. rank_result.extend(rov_recall_rank[:top_K])
  256. rov_recall_rank = rov_recall_rank[top_K:]
  257. else:
  258. rank_result.extend(all_flow_recall_rank[:top_K])
  259. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  260. #已存放了多少VID
  261. for rank_item in rank_result:
  262. rank_set.add(rank_item.get('videoId', 0))
  263. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  264. i = 0
  265. while i < size - top_K:
  266. # 随机生成[0, 1)浮点数
  267. rand = random.random()
  268. # log_.info('rand: {}'.format(rand))
  269. if rand < flow_pool_P:
  270. for flow_item in all_flow_recall_rank:
  271. flow_vid = flow_item.get('videoId', 0)
  272. if flow_vid in rank_set:
  273. continue
  274. else:
  275. rank_result.append(flow_item)
  276. rank_set.add(flow_vid)
  277. else:
  278. for recall_item in rov_recall_rank:
  279. flow_vid = recall_item.get('videoId', 0)
  280. if flow_vid in rank_set:
  281. continue
  282. else:
  283. rank_result.append(recall_item)
  284. rank_set.add(flow_vid)
  285. i += 1
  286. return rank_result[:size]
  287. def remove_duplicate(rov_recall, flow_recall, top_K):
  288. """
  289. 对多路召回的视频去重
  290. 去重原则:
  291. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  292. :param rov_recall: ROV召回池-已排序
  293. :param flow_recall: 流量池-已排序
  294. :param top_K: 保证topK为召回池视频 type-int
  295. :return:
  296. """
  297. flow_recall_result = []
  298. rov_recall_remove = []
  299. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  300. # rov_recall topK
  301. for item in rov_recall[:top_K]:
  302. if item['videoId'] in flow_recall_video_ids:
  303. flow_recall_video_ids.remove(item['videoId'])
  304. # other
  305. for item in rov_recall[top_K:]:
  306. if item['videoId'] in flow_recall_video_ids:
  307. rov_recall_remove.append(item)
  308. # rov recall remove
  309. for item in rov_recall_remove:
  310. rov_recall.remove(item)
  311. # flow recall remove
  312. for item in flow_recall:
  313. if item['videoId'] in flow_recall_video_ids:
  314. flow_recall_result.append(item)
  315. return rov_recall, flow_recall_result
  316. def bottom_strategy(request_id, size, app_type, ab_code, params):
  317. """
  318. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  319. :param request_id: request_id
  320. :param size: 需要获取的视频数
  321. :param app_type: 产品标识 type-int
  322. :param ab_code: abCode
  323. :param params:
  324. :return:
  325. """
  326. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  327. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  328. redis_helper = RedisHelper(params=params)
  329. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  330. if not data:
  331. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  332. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  333. # 二次兜底
  334. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  335. return bottom_data
  336. # 视频状态过滤采用离线定时过滤方案
  337. # 状态过滤
  338. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  339. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  340. if len(data) > size:
  341. random_data = numpy.random.choice(data, size, False)
  342. else:
  343. random_data = data
  344. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  345. for item in random_data]
  346. return bottom_data
  347. def bottom_strategy_last(size, app_type, ab_code, params):
  348. """
  349. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  350. :param size: 需要获取的视频数
  351. :param app_type: 产品标识 type-int
  352. :param ab_code: abCode
  353. :param params:
  354. :return:
  355. """
  356. redis_helper = RedisHelper(params=params)
  357. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  358. random_data = numpy.random.choice(bottom_data, size * 30, False)
  359. # 视频状态过滤采用离线定时过滤方案
  360. # 状态过滤
  361. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  362. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  363. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  364. for video_id in random_data[:size]]
  365. return bottom_data
  366. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  367. """
  368. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  369. :param size: 需要获取的视频数
  370. :param app_type: 产品标识 type-int
  371. :param mid: mid
  372. :param uid: uid
  373. :param ab_code: abCode
  374. :param client_info: 地域信息
  375. :param params:
  376. :return:
  377. """
  378. # 获取存在城市分组数据的城市编码列表
  379. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  380. # 获取provinceCode
  381. province_code = client_info.get('provinceCode', '-1')
  382. # 获取cityCode
  383. city_code = client_info.get('cityCode', '-1')
  384. if city_code in city_code_list:
  385. # 分城市数据存在时,获取城市分组数据
  386. region_code = city_code
  387. else:
  388. region_code = province_code
  389. if region_code == '':
  390. region_code = '-1'
  391. redis_helper = RedisHelper(params=params)
  392. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  393. bottom_result = []
  394. if bottom_data is None:
  395. return bottom_result
  396. if len(bottom_data) > 0:
  397. try:
  398. random_data = numpy.random.choice(bottom_data, size * 5, False)
  399. except Exception as e:
  400. random_data = bottom_data
  401. video_ids = [int(item) for item in random_data]
  402. # 过滤
  403. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  404. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  405. if filtered_data:
  406. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  407. for video_id in filtered_data[:size]]
  408. return bottom_result
  409. def video_rank_by_w_h_rate(videos):
  410. """
  411. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  412. :param videos:
  413. :return:
  414. """
  415. redis_helper = RedisHelper()
  416. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  417. top_2_push_from_flag = [False, False]
  418. for i, video in enumerate(videos[:2]):
  419. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  420. top_2_push_from_flag[i] = True
  421. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  422. return videos
  423. # ##### 判断前两个视频是否为横屏
  424. top_2_w_h_rate_flag = [False, False]
  425. for i, video in enumerate(videos[:2]):
  426. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  427. # 视频来源为置顶 或 流量池时,不做判断
  428. top_2_w_h_rate_flag[i] = True
  429. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  430. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  431. w_h_rate = redis_helper.get_score_with_value(
  432. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  433. if w_h_rate is not None:
  434. top_2_w_h_rate_flag[i] = True
  435. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  436. # 视频来源为 二层兜底时,判断是否是横屏
  437. w_h_rate = redis_helper.get_score_with_value(
  438. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  439. if w_h_rate is not None:
  440. top_2_w_h_rate_flag[i] = True
  441. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  442. return videos
  443. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  444. # 记录横屏视频位置
  445. horizontal_video_index = []
  446. # 记录流量池视频位置
  447. flow_video_index = []
  448. # 记录置顶视频位置
  449. top_video_index = []
  450. for i, video in enumerate(videos):
  451. # 视频来源为置顶
  452. if video['pushFrom'] == config_.PUSH_FROM['top']:
  453. top_video_index.append(i)
  454. # 视频来源为流量池
  455. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  456. flow_video_index.append(i)
  457. # 视频来源为rov召回池 或 一层兜底
  458. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  459. w_h_rate = redis_helper.get_score_with_value(
  460. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  461. if w_h_rate is not None:
  462. horizontal_video_index.append(i)
  463. else:
  464. continue
  465. # 视频来源为 二层兜底
  466. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  467. w_h_rate = redis_helper.get_score_with_value(
  468. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  469. if w_h_rate is not None:
  470. horizontal_video_index.append(i)
  471. else:
  472. continue
  473. # 重新排序
  474. top2_index = []
  475. for i in range(2):
  476. if i in top_video_index:
  477. top2_index.append(i)
  478. elif i in flow_video_index:
  479. top2_index.append(i)
  480. flow_video_index.remove(i)
  481. elif i in horizontal_video_index:
  482. top2_index.append(i)
  483. horizontal_video_index.remove(i)
  484. elif len(horizontal_video_index) > 0:
  485. # 调整横屏视频到第一位
  486. top2_index.append(horizontal_video_index[0])
  487. # 从横屏位置记录中移除
  488. horizontal_video_index.pop(0)
  489. elif i == 0:
  490. return videos
  491. # 重排
  492. flow_result = [videos[i] for i in flow_video_index]
  493. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  494. top2_result = []
  495. for i, j in enumerate(top2_index):
  496. item = videos[j]
  497. if i != j:
  498. # 修改abCode
  499. item['abCode'] = config_.AB_CODE['w_h_rate']
  500. top2_result.append(item)
  501. new_rank_result = top2_result
  502. for i in range(len(top2_index), len(videos)):
  503. if i in flow_video_index:
  504. new_rank_result.append(flow_result[0])
  505. flow_result.pop(0)
  506. else:
  507. new_rank_result.append(other_result[0])
  508. other_result.pop(0)
  509. return new_rank_result
  510. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  511. """
  512. 视频分发排序 - 包含老视频, 老视频插入固定位置
  513. :param rank_result: 排序后的结果
  514. :param size: 请求数
  515. :param old_video_index: 老视频插入的位置索引,默认为2
  516. :return: new_rank_result
  517. """
  518. if not old_video_recall:
  519. return rank_result
  520. if not rank_result:
  521. return old_video_recall[:size]
  522. # 视频去重
  523. rank_video_ids = [item['videoId'] for item in rank_result]
  524. old_video_remove = []
  525. for old_video in old_video_recall:
  526. if old_video['videoId'] in rank_video_ids:
  527. old_video_remove.append(old_video)
  528. for item in old_video_remove:
  529. old_video_recall.remove(item)
  530. if not old_video_recall:
  531. return rank_result
  532. # 插入老视频
  533. # 随机获取一个视频
  534. ind = random.randint(0, len(old_video_recall) - 1)
  535. old_video = old_video_recall[ind]
  536. # 插入
  537. if len(rank_result) < top_K:
  538. new_rank_result = rank_result + [old_video]
  539. else:
  540. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  541. if len(new_rank_result) > size:
  542. # 判断后两位视频来源
  543. push_from_1 = new_rank_result[-1]['pushFrom']
  544. push_from_2 = new_rank_result[-2]['pushFrom']
  545. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  546. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  547. return new_rank_result[:size]
  548. def video_new_rank2(data, size, top_K, flow_pool_P, ab_code, mid, exp_config=None, env_dict=None):
  549. """
  550. 视频分发排序
  551. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  552. :param size: 请求数
  553. :param top_K: 保证topK为召回池视频 type-int
  554. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  555. :return: rank_result
  556. """
  557. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  558. return [], 0
  559. #全量的是vlog,票圈精选, 334,60057,
  560. # 60054: simrecall,
  561. pre_str = "k_p2:"
  562. rov_recall_rank = data['rov_pool_recall']
  563. #print(rov_recall_rank)
  564. #call rank service
  565. #flag_call_service = 0
  566. sort_index = 0
  567. if exp_config and "sort_flag" in exp_config:
  568. sort_index = exp_config["sort_flag"]
  569. #print("sort_index:", sort_index)
  570. redisObj = RedisHelper()
  571. vidKeys = []
  572. rec_recall_item_list = []
  573. rec_recall_vid_list = []
  574. day_vidKeys = []
  575. hour_vidKeys = []
  576. pre_day_str = "v_ctr:"
  577. pre_hour_str = "v_hour_ctr:"
  578. for recall_item in data['rov_pool_recall']:
  579. try:
  580. vid = int(recall_item.get("videoId", 0))
  581. rec_recall_vid_list.append(vid)
  582. rec_recall_item_list.append(recall_item)
  583. vidKeys.append(pre_str + str(vid))
  584. day_vidKeys.append(pre_day_str+str(vid))
  585. hour_vidKeys.append(pre_hour_str+str(vid))
  586. except:
  587. continue
  588. video_scores = redisObj.get_batch_key(vidKeys)
  589. #print("video_scores:", video_scores)
  590. if (ab_code == 60066 or ab_code == 60069 or ab_code == 60070 or ab_code == 60071) and len(rec_recall_vid_list)>0:
  591. video_static_info = redisObj.get_batch_key(day_vidKeys)
  592. video_hour_static_info = redisObj.get_batch_key(hour_vidKeys)
  593. #print("env_dict:", env_dict)
  594. feature_dict = get_featurs(mid, data, size, top_K, flow_pool_P, rec_recall_vid_list,env_dict, video_static_info, video_hour_static_info)
  595. score_result = get_tf_serving_sores(feature_dict)
  596. #print("score_result:", score_result)
  597. if video_scores and len(video_scores)>0 and rec_recall_item_list and score_result and len(score_result) > 0\
  598. and len(score_result) == len(rec_recall_item_list) and len(video_scores)== len(score_result):
  599. for i in range(len(score_result)):
  600. try:
  601. if video_scores[i] is None and len(score_result[i])>0:
  602. return_score = 0.000000001
  603. # sore_index :10 = model score
  604. if sort_index == 10:
  605. total_score = score_result[i][0]
  606. else:
  607. total_score = return_score * score_result[i][0]
  608. rec_recall_item_list[i]['sort_score'] = total_score
  609. rec_recall_item_list[i]['base_rov_score'] = 0.0
  610. rec_recall_item_list[i]['share_score'] = return_score
  611. else:
  612. video_score_str = json.loads(video_scores[i])
  613. # sore_index :10 = model score
  614. return_score = 0.000000001
  615. if sort_index == 10:
  616. total_score = score_result[i][0]
  617. else:
  618. if len(video_score_str)>= sort_index and len(video_score_str)>0:
  619. return_score = video_score_str[sort_index]
  620. total_score = return_score * score_result[i][0]
  621. #print("total_score:", total_score, " model score :", score_result[i][0], "return_score:",
  622. # return_score)
  623. rec_recall_item_list[i]['sort_score'] = total_score
  624. rec_recall_item_list[i]['base_rov_score'] = video_score_str[0]
  625. rec_recall_item_list[i]['share_score'] = return_score
  626. except Exception as e:
  627. #print('exception: {}:', e)
  628. return_score = 0.000000001
  629. if sort_index == 10:
  630. total_score = 0.00000001
  631. else:
  632. total_score = return_score * 0.00000001
  633. rec_recall_item_list[i]['sort_score'] = total_score
  634. rec_recall_item_list[i]['base_rov_score'] = video_score_str[0]
  635. rec_recall_item_list[i]['share_score'] = return_score
  636. rec_recall_item_list[i]['flag_call_service'] = 1
  637. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  638. else:
  639. rov_recall_rank = sup_rank(video_scores, rec_recall_item_list)
  640. else:
  641. if video_scores and len(rec_recall_item_list) > 0 and len(video_scores)>0:
  642. for i in range(len(video_scores)):
  643. try:
  644. if video_scores[i] is None:
  645. rec_recall_item_list[i]['sort_score'] = 0.0
  646. else:
  647. video_score_str = json.loads(video_scores[i])
  648. # print("video_score_str:", video_score_str)
  649. rec_recall_item_list[i]['sort_score'] = video_score_str[0]
  650. except Exception:
  651. rec_recall_item_list[i]['sort_score'] = 0.0
  652. rov_recall_rank = sorted(rec_recall_item_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  653. #print(rov_recall_rank)
  654. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  655. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  656. top_K=top_K)
  657. rank_result = []
  658. rank_set = set('')
  659. # 从ROV召回池中获取top k
  660. if len(rov_recall_rank) > 0:
  661. rank_result.extend(rov_recall_rank[:top_K])
  662. rov_recall_rank = rov_recall_rank[top_K:]
  663. else:
  664. rank_result.extend(flow_recall_rank[:top_K])
  665. flow_recall_rank = flow_recall_rank[top_K:]
  666. # 按概率 p 及score排序获取 size - k 个视频
  667. flow_num = 0
  668. flowConfig = 0
  669. # 本段代码控制流量池,通过实验传参,现不动
  670. if flowConfig == 1 and len(rov_recall_rank) > 0:
  671. for recall_item in rank_result:
  672. flow_recall_name = recall_item.get("flowPool", '')
  673. flow_num = flow_num + 1
  674. all_recall_rank = rov_recall_rank + flow_recall_rank
  675. if flow_num > 0:
  676. rank_result.extend(all_recall_rank[:size - top_K])
  677. return rank_result, flow_num
  678. else:
  679. i = 0
  680. while i < size - top_K:
  681. # 随机生成[0, 1)浮点数
  682. rand = random.random()
  683. # log_.info('rand: {}'.format(rand))
  684. if rand < flow_pool_P:
  685. if flow_recall_rank:
  686. rank_result.append(flow_recall_rank[0])
  687. flow_recall_rank.remove(flow_recall_rank[0])
  688. else:
  689. rank_result.extend(rov_recall_rank[:size - top_K - i])
  690. return rank_result[:size], flow_num
  691. else:
  692. if rov_recall_rank:
  693. rank_result.append(rov_recall_rank[0])
  694. rov_recall_rank.remove(rov_recall_rank[0])
  695. else:
  696. rank_result.extend(flow_recall_rank[:size - top_K - i])
  697. return rank_result[:size], flow_num
  698. i += 1
  699. else:
  700. i = 0
  701. while i < size - top_K:
  702. # 随机生成[0, 1)浮点数
  703. rand = random.random()
  704. # log_.info('rand: {}'.format(rand))
  705. if rand < flow_pool_P:
  706. if flow_recall_rank:
  707. rank_result.append(flow_recall_rank[0])
  708. flow_recall_rank.remove(flow_recall_rank[0])
  709. else:
  710. rank_result.extend(rov_recall_rank[:size - top_K - i])
  711. return rank_result[:size], flow_num
  712. else:
  713. if rov_recall_rank:
  714. rank_result.append(rov_recall_rank[0])
  715. rov_recall_rank.remove(rov_recall_rank[0])
  716. else:
  717. rank_result.extend(flow_recall_rank[:size - top_K - i])
  718. return rank_result[:size], flow_num
  719. i += 1
  720. return rank_result[:size], flow_num
  721. # 排序服务兜底
  722. def sup_rank(video_scores, recall_list):
  723. if video_scores and len(recall_list) > 0:
  724. for i in range(len(video_scores)):
  725. try:
  726. if video_scores[i] is None:
  727. recall_list[i]['sort_score'] = 0.0
  728. else:
  729. video_score_str = json.loads(video_scores[i])
  730. recall_list[i]['flag_call_service'] = 0
  731. recall_list[i]['sort_score'] = video_score_str[0]
  732. except Exception:
  733. recall_list[i]['sort_score'] = 0.0
  734. rov_recall_rank = sorted(recall_list, key=lambda k: k.get('sort_score', 0), reverse=True)
  735. #print("rov_recall_rank:", rov_recall_rank)
  736. else:
  737. rov_recall_rank = recall_list
  738. return rov_recall_rank
  739. def video_sanke_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  740. """
  741. 视频分发排序
  742. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  743. :param size: 请求数
  744. :param top_K: 保证topK为召回池视频 type-int
  745. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  746. :return: rank_result
  747. """
  748. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  749. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  750. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  751. return [], 0
  752. # 地域分组小时级规则更新数据
  753. recall_dict = {}
  754. region_h_recall = [item for item in data['rov_pool_recall']
  755. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  756. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  757. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  758. # 地域分组小时级更新24h规则更新数据
  759. region_24h_recall = [item for item in data['rov_pool_recall']
  760. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  761. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  762. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  763. # 相对24h规则更新数据
  764. rule_24h_recall = [item for item in data['rov_pool_recall']
  765. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  766. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  767. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  768. # 相对24h规则筛选后剩余更新数据
  769. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  770. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  771. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  772. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  773. hot_recall = []
  774. w2v_recall =[]
  775. sim_recall = []
  776. u2u2i_recall = []
  777. if ab_Code==60058:
  778. if len(data['u2i_recall'])>0:
  779. hot_recall = sorted(data['u2i_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  780. recall_dict['u2i_recall'] = hot_recall
  781. elif ab_Code==60059:
  782. if len(data['w2v_recall'])>0:
  783. recall_dict['w2v_recall'] = data['w2v_recall']
  784. else:
  785. recall_dict['w2v_recall'] = w2v_recall
  786. elif ab_Code==60061 or ab_Code==60063:
  787. if len(data['sim_recall'])>0:
  788. recall_dict['sim_recall'] = data['sim_recall']
  789. else:
  790. recall_dict['sim_recall'] = sim_recall
  791. elif ab_Code==60062:
  792. if len(data['u2u2i_recall'])>0:
  793. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  794. else:
  795. recall_dict['u2u2i_recall'] = u2u2i_recall
  796. recall_list = [('rov_recall_region_h',1, 1),('rov_recall_region_h',0.5, 1),('rov_recall_region_24h',1,1),
  797. ('u2i_recall',0.5,1), ('w2v_recall',0.5,1),('rov_recall_24h',1,1), ('rov_recall_24h_dup',0.5,1)]
  798. if exp_config and exp_config['recall_list']:
  799. recall_list = exp_config['recall_list']
  800. #print("recall_config:", recall_list)
  801. rov_recall_rank = []
  802. select_ids = set('')
  803. for i in range(3):
  804. if len(rov_recall_rank)>8:
  805. break
  806. for per_recall_item in recall_list:
  807. per_recall_name = per_recall_item[0]
  808. per_recall_freq = per_recall_item[1]
  809. per_limt_num = per_recall_item[2]
  810. rand_num = random.random()
  811. #print(recall_dict[per_recall_name])
  812. if rand_num<per_recall_freq and per_recall_name in recall_dict:
  813. per_recall = recall_dict[per_recall_name]
  814. #print("per_recall_item:", per_recall_item)
  815. cur_recall_num = 0
  816. for recall_item in per_recall:
  817. vid = recall_item['videoId']
  818. if vid in select_ids:
  819. continue
  820. rov_recall_rank.append(recall_item)
  821. select_ids.add(vid)
  822. cur_recall_num+=1
  823. if cur_recall_num>=per_limt_num:
  824. break
  825. # print("rov_recall_rank:")
  826. # print(rov_recall_rank)
  827. #rov_recall_rank = region_h_recall_rank + region_24h_recall_rank + \
  828. # rule_24h_recall_rank + rule_24h_dup_recall_rank
  829. # 流量池
  830. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  831. # 对各路召回的视频进行去重
  832. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  833. top_K=top_K)
  834. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  835. # rov_recall_rank, flow_recall_rank))
  836. # rank_result = relevant_recall_rank
  837. rank_result = []
  838. # 从ROV召回池中获取top k
  839. if len(rov_recall_rank) > 0:
  840. rank_result.extend(rov_recall_rank[:top_K])
  841. rov_recall_rank = rov_recall_rank[top_K:]
  842. else:
  843. rank_result.extend(flow_recall_rank[:top_K])
  844. flow_recall_rank = flow_recall_rank[top_K:]
  845. flow_num = 0
  846. flowConfig =0
  847. if exp_config and exp_config['flowConfig']:
  848. flowConfig = exp_config['flowConfig']
  849. if flowConfig == 1 and len(rov_recall_rank) > 0:
  850. rank_result.extend(rov_recall_rank[:top_K])
  851. for recall_item in rank_result:
  852. flow_recall_name = recall_item.get("flowPool", '')
  853. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  854. flow_num = flow_num + 1
  855. all_recall_rank = rov_recall_rank + flow_recall_rank
  856. if flow_num > 0:
  857. rank_result.extend(all_recall_rank[:size - top_K])
  858. return rank_result[:size], flow_num
  859. else:
  860. # 按概率 p 及score排序获取 size - k 个视频
  861. i = 0
  862. while i < size - top_K:
  863. # 随机生成[0, 1)浮点数
  864. rand = random.random()
  865. # log_.info('rand: {}'.format(rand))
  866. if rand < flow_pool_P:
  867. if flow_recall_rank:
  868. rank_result.append(flow_recall_rank[0])
  869. flow_recall_rank.remove(flow_recall_rank[0])
  870. else:
  871. rank_result.extend(rov_recall_rank[:size - top_K - i])
  872. return rank_result[:size], flow_num
  873. else:
  874. if rov_recall_rank:
  875. rank_result.append(rov_recall_rank[0])
  876. rov_recall_rank.remove(rov_recall_rank[0])
  877. else:
  878. rank_result.extend(flow_recall_rank[:size - top_K - i])
  879. return rank_result[:size], flow_num
  880. i += 1
  881. else:
  882. # 按概率 p 及score排序获取 size - k 个视频
  883. i = 0
  884. while i < size - top_K:
  885. # 随机生成[0, 1)浮点数
  886. rand = random.random()
  887. # log_.info('rand: {}'.format(rand))
  888. if rand < flow_pool_P:
  889. if flow_recall_rank:
  890. rank_result.append(flow_recall_rank[0])
  891. flow_recall_rank.remove(flow_recall_rank[0])
  892. else:
  893. rank_result.extend(rov_recall_rank[:size - top_K - i])
  894. return rank_result[:size], flow_num
  895. else:
  896. if rov_recall_rank:
  897. rank_result.append(rov_recall_rank[0])
  898. rov_recall_rank.remove(rov_recall_rank[0])
  899. else:
  900. rank_result.extend(flow_recall_rank[:size - top_K - i])
  901. return rank_result[:size],flow_num
  902. i += 1
  903. return rank_result[:size], flow_num
  904. def video_sank_pos_rank(data, size, top_K, flow_pool_P, ab_Code='', exp_config=None):
  905. """
  906. 视频分发排序
  907. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  908. :param size: 请求数
  909. :param top_K: 保证topK为召回池视频 type-int
  910. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  911. :return: rank_result
  912. """
  913. if not data['rov_pool_recall'] and not data['flow_pool_recall'] \
  914. and len(data['u2i_recall'])==0 and len(data['w2v_recall'])==0 \
  915. and len(data['sim_recall']) == 0 and len(data['u2u2i_recall']) == 0 :
  916. return [], 0
  917. # 地域分组小时级规则更新数据
  918. recall_dict = {}
  919. region_h_recall = [item for item in data['rov_pool_recall']
  920. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  921. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  922. recall_dict['rov_recall_region_h'] = region_h_recall_rank
  923. # 地域分组小时级更新24h规则更新数据
  924. region_24h_recall = [item for item in data['rov_pool_recall']
  925. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  926. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  927. recall_dict['rov_recall_region_24h'] = region_24h_recall_rank
  928. # 相对24h规则更新数据
  929. rule_24h_recall = [item for item in data['rov_pool_recall']
  930. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  931. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  932. recall_dict['rov_recall_24h'] = rule_24h_recall_rank
  933. # 相对24h规则筛选后剩余更新数据
  934. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  935. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  936. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  937. recall_dict['rov_recall_24h_dup'] = rule_24h_dup_recall_rank
  938. u2i_recall = []
  939. u2i_play_recall = []
  940. w2v_recall =[]
  941. sim_recall = []
  942. u2u2i_recall = []
  943. return_video_recall = []
  944. #print("")
  945. if ab_Code==60058:
  946. if len(data['u2i_recall'])>0:
  947. recall_dict['u2i_recall'] = data['u2i_recall']
  948. else:
  949. recall_dict['u2i_recall'] = u2i_recall
  950. if len(data['u2i_play_recall']) > 0:
  951. recall_dict['u2i_play_recall'] = data['u2i_play_recall']
  952. else:
  953. recall_dict['u2i_play_recall'] = u2i_play_recall
  954. elif ab_Code==60059:
  955. if len(data['w2v_recall'])>0:
  956. recall_dict['w2v_recall'] = data['w2v_recall']
  957. else:
  958. recall_dict['w2v_recall'] = w2v_recall
  959. elif ab_Code==60061 or ab_Code==60063:
  960. if len(data['sim_recall'])>0:
  961. recall_dict['sim_recall'] = data['sim_recall']
  962. else:
  963. recall_dict['sim_recall'] = sim_recall
  964. elif ab_Code==60062:
  965. if len(data['u2u2i_recall'])>0:
  966. recall_dict['u2u2i_recall'] = data['u2u2i_recall']
  967. else:
  968. recall_dict['u2u2i_recall'] = u2u2i_recall
  969. elif ab_Code==60064:
  970. if len(data['return_video_recall'])>0:
  971. recall_dict['return_video_recall'] = data['return_video_recall']
  972. else:
  973. recall_dict['return_video_recall'] = return_video_recall
  974. recall_pos1 = [('rov_recall_region_h',0, 0.98),('rov_recall_24h',0.98, 1),('rov_recall_region_24h',0,1),
  975. ('rov_recall_24h',0,1), ('rov_recall_24h_dup',0,1)]
  976. recall_pos2 = [('rov_recall_region_h',0,0.98),('rov_recall_24h',0.98,1),('rov_recall_region_24h',0,1),
  977. ('rov_recall_24h',0,1),('rov_recall_24h_dup',0,1)]
  978. recall_pos3 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0.98,1), ('rov_recall_region_24h', 0,1),
  979. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  980. recall_pos4 = [('rov_recall_region_h', 0,0.98), ('rov_recall_24h', 0,0.02), ('rov_recall_region_24h', 0,1),
  981. ('rov_recall_24h', 0,1), ('rov_recall_24h_dup', 0,1)]
  982. if exp_config and 'recall_pos1' in exp_config \
  983. and 'recall_pos2' in exp_config \
  984. and 'recall_pos3' in exp_config \
  985. and 'recall_pos4' in exp_config :
  986. recall_pos1 = exp_config['recall_pos1']
  987. recall_pos2 = exp_config['recall_pos2']
  988. recall_pos3 = exp_config['recall_pos3']
  989. recall_pos4 = exp_config['recall_pos4']
  990. #print("recall_config:", recall_pos1)
  991. rov_recall_rank = []
  992. recall_list = []
  993. recall_list.append(recall_pos1)
  994. recall_list.append(recall_pos2)
  995. recall_list.append(recall_pos3)
  996. recall_list.append(recall_pos4)
  997. select_ids = set('')
  998. recall_num_limit_dict = {}
  999. if exp_config and 'recall_num_limit' in exp_config:
  1000. recall_num_limit_dict = exp_config['recall_num_limit']
  1001. exp_recall_dict = {}
  1002. #index_pos = 0
  1003. for j in range(3):
  1004. if len(rov_recall_rank)>12:
  1005. break
  1006. # choose pos
  1007. for recall_pos_config in recall_list:
  1008. rand_num = random.random()
  1009. index_pos = 0
  1010. # choose pos recall
  1011. for per_recall_item in recall_pos_config:
  1012. if index_pos == 1:
  1013. break
  1014. if len(per_recall_item)<3:
  1015. continue
  1016. per_recall_name = per_recall_item[0]
  1017. per_recall_min = float(per_recall_item[1])
  1018. per_recall_max = float(per_recall_item[2])
  1019. per_recall_num = exp_recall_dict.get(per_recall_name, 0)
  1020. per_recall_total_num = recall_num_limit_dict.get(per_recall_name, 0)
  1021. # recall set total num
  1022. if len(recall_num_limit_dict)>0 and per_recall_total_num>0 and per_recall_num>= per_recall_total_num:
  1023. continue
  1024. if rand_num >= per_recall_min and rand_num < per_recall_max and per_recall_name in recall_dict:
  1025. per_recall = recall_dict[per_recall_name]
  1026. for recall_item in per_recall:
  1027. vid = recall_item['videoId']
  1028. if vid in select_ids:
  1029. continue
  1030. recall_item['rand'] = rand_num
  1031. rov_recall_rank.append(recall_item)
  1032. select_ids.add(vid)
  1033. if per_recall_name in exp_recall_dict:
  1034. exp_recall_dict[per_recall_name] +=1
  1035. else:
  1036. exp_recall_dict[per_recall_name] = 1
  1037. index_pos = 1
  1038. break
  1039. #print("rov_recall_rank:", rov_recall_rank)
  1040. if len(rov_recall_rank)<4:
  1041. rov_doudi_rank = region_h_recall_rank + sim_recall + u2i_recall + u2u2i_recall + w2v_recall +return_video_recall+u2i_play_recall+ region_24h_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank
  1042. for recall_item in rov_doudi_rank:
  1043. vid = recall_item['videoId']
  1044. if vid in select_ids:
  1045. continue
  1046. rov_recall_rank.append(recall_item)
  1047. select_ids.add(vid)
  1048. if len(rov_recall_rank)>12:
  1049. break
  1050. # print("rov_recall_rank:")
  1051. #print(rov_recall_rank)
  1052. # 流量池
  1053. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  1054. # 对各路召回的视频进行去重
  1055. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  1056. top_K=top_K)
  1057. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  1058. # rov_recall_rank, flow_recall_rank))
  1059. # rank_result = relevant_recall_rank
  1060. rank_result = []
  1061. # 从ROV召回池中获取top k
  1062. if len(rov_recall_rank) > 0:
  1063. rank_result.extend(rov_recall_rank[:top_K])
  1064. rov_recall_rank = rov_recall_rank[top_K:]
  1065. else:
  1066. rank_result.extend(flow_recall_rank[:top_K])
  1067. flow_recall_rank = flow_recall_rank[top_K:]
  1068. flow_num = 0
  1069. flowConfig =0
  1070. if exp_config and exp_config['flowConfig']:
  1071. flowConfig = exp_config['flowConfig']
  1072. if flowConfig == 1 and len(rov_recall_rank) > 0:
  1073. rank_result.extend(rov_recall_rank[:top_K])
  1074. for recall_item in rank_result:
  1075. flow_recall_name = recall_item.get("flowPool", '')
  1076. if flow_recall_name is not None and flow_recall_name.find("#") > -1:
  1077. flow_num = flow_num + 1
  1078. all_recall_rank = rov_recall_rank + flow_recall_rank
  1079. if flow_num > 0:
  1080. rank_result.extend(all_recall_rank[:size - top_K])
  1081. return rank_result[:size], flow_num
  1082. else:
  1083. # 按概率 p 及score排序获取 size - k 个视频
  1084. i = 0
  1085. while i < size - top_K:
  1086. # 随机生成[0, 1)浮点数
  1087. rand = random.random()
  1088. # log_.info('rand: {}'.format(rand))
  1089. if rand < flow_pool_P:
  1090. if flow_recall_rank:
  1091. rank_result.append(flow_recall_rank[0])
  1092. flow_recall_rank.remove(flow_recall_rank[0])
  1093. else:
  1094. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1095. return rank_result[:size], flow_num
  1096. else:
  1097. if rov_recall_rank:
  1098. rank_result.append(rov_recall_rank[0])
  1099. rov_recall_rank.remove(rov_recall_rank[0])
  1100. else:
  1101. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1102. return rank_result[:size], flow_num
  1103. i += 1
  1104. else:
  1105. # 按概率 p 及score排序获取 size - k 个视频
  1106. i = 0
  1107. while i < size - top_K:
  1108. # 随机生成[0, 1)浮点数
  1109. rand = random.random()
  1110. # log_.info('rand: {}'.format(rand))
  1111. if rand < flow_pool_P:
  1112. if flow_recall_rank:
  1113. rank_result.append(flow_recall_rank[0])
  1114. flow_recall_rank.remove(flow_recall_rank[0])
  1115. else:
  1116. rank_result.extend(rov_recall_rank[:size - top_K - i])
  1117. return rank_result[:size], flow_num
  1118. else:
  1119. if rov_recall_rank:
  1120. rank_result.append(rov_recall_rank[0])
  1121. rov_recall_rank.remove(rov_recall_rank[0])
  1122. else:
  1123. rank_result.extend(flow_recall_rank[:size - top_K - i])
  1124. return rank_result[:size],flow_num
  1125. i += 1
  1126. return rank_result[:size], flow_num
  1127. if __name__ == '__main__':
  1128. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1129. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1130. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1131. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1132. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1133. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1134. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  1135. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1136. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  1137. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  1138. res = video_rank_by_w_h_rate(videos=d_test)
  1139. for tmp in res:
  1140. print(tmp)