video_rank.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 最惊奇相关推荐相似视频
  23. # relevant_recall = [item for item in data['rov_pool_recall']
  24. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  25. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  26. # 最惊奇完整影视视频
  27. # whole_movies_recall = [item for item in data['rov_pool_recall']
  28. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  29. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  30. # 最惊奇影视解说视频
  31. # talk_videos_recall = [item for item in data['rov_pool_recall']
  32. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  33. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  34. # 小时级更新数据
  35. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  36. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 相对30天天级规则更新数据
  38. day_30_recall = [item for item in data['rov_pool_recall']
  39. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  40. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  41. # 地域分组小时级规则更新数据
  42. region_h_recall = [item for item in data['rov_pool_recall']
  43. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  44. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  45. # 地域分组小时级更新24h规则更新数据
  46. region_24h_recall = [item for item in data['rov_pool_recall']
  47. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  48. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  49. # 地域分组天级规则更新数据
  50. # region_day_recall = [item for item in data['rov_pool_recall']
  51. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  52. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  53. # 相对24h规则更新数据
  54. rule_24h_recall = [item for item in data['rov_pool_recall']
  55. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  56. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  57. # 相对24h规则筛选后剩余更新数据
  58. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  59. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  60. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  61. # 相对48h规则更新数据
  62. rule_48h_recall = [item for item in data['rov_pool_recall']
  63. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  64. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  65. # 相对48h规则筛选后剩余更新数据
  66. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  67. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  68. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  69. # 天级规则更新数据
  70. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  71. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  72. # ROV召回池
  73. # rov_initial_recall = [
  74. # item for item in data['rov_pool_recall']
  75. # if item.get('pushFrom') not in
  76. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  77. # config_.PUSH_FROM['rov_recall_h'],
  78. # config_.PUSH_FROM['rov_recall_region_h'],
  79. # config_.PUSH_FROM['rov_recall_region_24h'],
  80. # config_.PUSH_FROM['rov_recall_region_day'],
  81. # config_.PUSH_FROM['rov_recall_24h'],
  82. # config_.PUSH_FROM['rov_recall_24h_dup'],
  83. # config_.PUSH_FROM['rov_recall_48h'],
  84. # config_.PUSH_FROM['rov_recall_48h_dup'],
  85. # config_.PUSH_FROM['rov_recall_day'],
  86. # config_.PUSH_FROM['whole_movies'],
  87. # config_.PUSH_FROM['talk_videos']]
  88. # ]
  89. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  90. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  91. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  92. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  93. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  94. # day_recall_rank + rov_initial_recall_rank
  95. rov_recall_rank = day_30_recall_rank + \
  96. region_h_recall_rank + region_24h_recall_rank + \
  97. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  98. rule_48h_recall_rank + rule_48h_dup_recall_rank
  99. # 流量池
  100. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  101. # 对各路召回的视频进行去重
  102. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  103. top_K=top_K)
  104. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  105. # rov_recall_rank, flow_recall_rank))
  106. # rank_result = relevant_recall_rank
  107. rank_result = []
  108. # 从ROV召回池中获取top k
  109. if len(rov_recall_rank) > 0:
  110. rank_result.extend(rov_recall_rank[:top_K])
  111. rov_recall_rank = rov_recall_rank[top_K:]
  112. else:
  113. rank_result.extend(flow_recall_rank[:top_K])
  114. flow_recall_rank = flow_recall_rank[top_K:]
  115. # 按概率 p 及score排序获取 size - k 个视频
  116. i = 0
  117. while i < size - top_K:
  118. # 随机生成[0, 1)浮点数
  119. rand = random.random()
  120. # log_.info('rand: {}'.format(rand))
  121. if rand < flow_pool_P:
  122. if flow_recall_rank:
  123. rank_result.append(flow_recall_rank[0])
  124. flow_recall_rank.remove(flow_recall_rank[0])
  125. else:
  126. rank_result.extend(rov_recall_rank[:size - top_K - i])
  127. return rank_result[:size]
  128. else:
  129. if rov_recall_rank:
  130. rank_result.append(rov_recall_rank[0])
  131. rov_recall_rank.remove(rov_recall_rank[0])
  132. else:
  133. rank_result.extend(flow_recall_rank[:size - top_K - i])
  134. return rank_result[:size]
  135. i += 1
  136. return rank_result[:size]
  137. def remove_duplicate(rov_recall, flow_recall, top_K):
  138. """
  139. 对多路召回的视频去重
  140. 去重原则:
  141. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  142. :param rov_recall: ROV召回池-已排序
  143. :param flow_recall: 流量池-已排序
  144. :param top_K: 保证topK为召回池视频 type-int
  145. :return:
  146. """
  147. flow_recall_result = []
  148. rov_recall_remove = []
  149. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  150. # rov_recall topK
  151. for item in rov_recall[:top_K]:
  152. if item['videoId'] in flow_recall_video_ids:
  153. flow_recall_video_ids.remove(item['videoId'])
  154. # other
  155. for item in rov_recall[top_K:]:
  156. if item['videoId'] in flow_recall_video_ids:
  157. rov_recall_remove.append(item)
  158. # rov recall remove
  159. for item in rov_recall_remove:
  160. rov_recall.remove(item)
  161. # flow recall remove
  162. for item in flow_recall:
  163. if item['videoId'] in flow_recall_video_ids:
  164. flow_recall_result.append(item)
  165. return rov_recall, flow_recall_result
  166. def bottom_strategy(request_id, size, app_type, ab_code, params):
  167. """
  168. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  169. :param request_id: request_id
  170. :param size: 需要获取的视频数
  171. :param app_type: 产品标识 type-int
  172. :param ab_code: abCode
  173. :param params:
  174. :return:
  175. """
  176. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  177. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  178. redis_helper = RedisHelper(params=params)
  179. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  180. if not data:
  181. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  182. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  183. # 二次兜底
  184. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  185. return bottom_data
  186. # 视频状态过滤采用离线定时过滤方案
  187. # 状态过滤
  188. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  189. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  190. if len(data) > size:
  191. random_data = numpy.random.choice(data, size, False)
  192. else:
  193. random_data = data
  194. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  195. for item in random_data]
  196. return bottom_data
  197. def bottom_strategy_last(size, app_type, ab_code, params):
  198. """
  199. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  200. :param size: 需要获取的视频数
  201. :param app_type: 产品标识 type-int
  202. :param ab_code: abCode
  203. :param params:
  204. :return:
  205. """
  206. redis_helper = RedisHelper(params=params)
  207. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  208. random_data = numpy.random.choice(bottom_data, size * 30, False)
  209. # 视频状态过滤采用离线定时过滤方案
  210. # 状态过滤
  211. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  212. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  213. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  214. for video_id in random_data[:size]]
  215. return bottom_data
  216. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  217. """
  218. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  219. :param size: 需要获取的视频数
  220. :param app_type: 产品标识 type-int
  221. :param mid: mid
  222. :param uid: uid
  223. :param ab_code: abCode
  224. :param client_info: 地域信息
  225. :param params:
  226. :return:
  227. """
  228. # 获取存在城市分组数据的城市编码列表
  229. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  230. # 获取provinceCode
  231. province_code = client_info.get('provinceCode', '-1')
  232. # 获取cityCode
  233. city_code = client_info.get('cityCode', '-1')
  234. if city_code in city_code_list:
  235. # 分城市数据存在时,获取城市分组数据
  236. region_code = city_code
  237. else:
  238. region_code = province_code
  239. if region_code == '':
  240. region_code = '-1'
  241. redis_helper = RedisHelper(params=params)
  242. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  243. bottom_result = []
  244. if bottom_data is None:
  245. return bottom_result
  246. if len(bottom_data) > 0:
  247. try:
  248. random_data = numpy.random.choice(bottom_data, size * 5, False)
  249. except Exception as e:
  250. random_data = bottom_data
  251. video_ids = [int(item) for item in random_data]
  252. # 过滤
  253. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  254. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  255. if filtered_data:
  256. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  257. for video_id in filtered_data[:size]]
  258. return bottom_result
  259. def video_rank_by_w_h_rate(videos):
  260. """
  261. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  262. :param videos:
  263. :return:
  264. """
  265. redis_helper = RedisHelper()
  266. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  267. top_2_push_from_flag = [False, False]
  268. for i, video in enumerate(videos[:2]):
  269. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  270. top_2_push_from_flag[i] = True
  271. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  272. return videos
  273. # ##### 判断前两个视频是否为横屏
  274. top_2_w_h_rate_flag = [False, False]
  275. for i, video in enumerate(videos[:2]):
  276. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  277. # 视频来源为置顶 或 流量池时,不做判断
  278. top_2_w_h_rate_flag[i] = True
  279. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  280. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  281. w_h_rate = redis_helper.get_score_with_value(
  282. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  283. if w_h_rate is not None:
  284. top_2_w_h_rate_flag[i] = True
  285. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  286. # 视频来源为 二层兜底时,判断是否是横屏
  287. w_h_rate = redis_helper.get_score_with_value(
  288. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  289. if w_h_rate is not None:
  290. top_2_w_h_rate_flag[i] = True
  291. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  292. return videos
  293. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  294. # 记录横屏视频位置
  295. horizontal_video_index = []
  296. # 记录流量池视频位置
  297. flow_video_index = []
  298. # 记录置顶视频位置
  299. top_video_index = []
  300. for i, video in enumerate(videos):
  301. # 视频来源为置顶
  302. if video['pushFrom'] == config_.PUSH_FROM['top']:
  303. top_video_index.append(i)
  304. # 视频来源为流量池
  305. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  306. flow_video_index.append(i)
  307. # 视频来源为rov召回池 或 一层兜底
  308. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  309. w_h_rate = redis_helper.get_score_with_value(
  310. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  311. if w_h_rate is not None:
  312. horizontal_video_index.append(i)
  313. else:
  314. continue
  315. # 视频来源为 二层兜底
  316. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  317. w_h_rate = redis_helper.get_score_with_value(
  318. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  319. if w_h_rate is not None:
  320. horizontal_video_index.append(i)
  321. else:
  322. continue
  323. # 重新排序
  324. top2_index = []
  325. for i in range(2):
  326. if i in top_video_index:
  327. top2_index.append(i)
  328. elif i in flow_video_index:
  329. top2_index.append(i)
  330. flow_video_index.remove(i)
  331. elif i in horizontal_video_index:
  332. top2_index.append(i)
  333. horizontal_video_index.remove(i)
  334. elif len(horizontal_video_index) > 0:
  335. # 调整横屏视频到第一位
  336. top2_index.append(horizontal_video_index[0])
  337. # 从横屏位置记录中移除
  338. horizontal_video_index.pop(0)
  339. elif i == 0:
  340. return videos
  341. # 重排
  342. flow_result = [videos[i] for i in flow_video_index]
  343. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  344. top2_result = []
  345. for i, j in enumerate(top2_index):
  346. item = videos[j]
  347. if i != j:
  348. # 修改abCode
  349. item['abCode'] = config_.AB_CODE['w_h_rate']
  350. top2_result.append(item)
  351. new_rank_result = top2_result
  352. for i in range(len(top2_index), len(videos)):
  353. if i in flow_video_index:
  354. new_rank_result.append(flow_result[0])
  355. flow_result.pop(0)
  356. else:
  357. new_rank_result.append(other_result[0])
  358. other_result.pop(0)
  359. return new_rank_result
  360. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  361. """
  362. 视频分发排序 - 包含老视频, 老视频插入固定位置
  363. :param rank_result: 排序后的结果
  364. :param size: 请求数
  365. :param old_video_index: 老视频插入的位置索引,默认为2
  366. :return: new_rank_result
  367. """
  368. if not old_video_recall:
  369. return rank_result
  370. if not rank_result:
  371. return old_video_recall[:size]
  372. # 视频去重
  373. rank_video_ids = [item['videoId'] for item in rank_result]
  374. old_video_remove = []
  375. for old_video in old_video_recall:
  376. if old_video['videoId'] in rank_video_ids:
  377. old_video_remove.append(old_video)
  378. for item in old_video_remove:
  379. old_video_recall.remove(item)
  380. if not old_video_recall:
  381. return rank_result
  382. # 插入老视频
  383. # 随机获取一个视频
  384. ind = random.randint(0, len(old_video_recall) - 1)
  385. old_video = old_video_recall[ind]
  386. # 插入
  387. if len(rank_result) < top_K:
  388. new_rank_result = rank_result + [old_video]
  389. else:
  390. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  391. if len(new_rank_result) > size:
  392. # 判断后两位视频来源
  393. push_from_1 = new_rank_result[-1]['pushFrom']
  394. push_from_2 = new_rank_result[-2]['pushFrom']
  395. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  396. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  397. return new_rank_result[:size]
  398. if __name__ == '__main__':
  399. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  400. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  401. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  402. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  403. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  404. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  405. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  406. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  407. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  408. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  409. res = video_rank_by_w_h_rate(videos=d_test)
  410. for tmp in res:
  411. print(tmp)