recommend.py 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(request_id, app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param request_id: request_id
  22. :param app_type: 产品标识 type-int
  23. :param mid: mid
  24. :param uid: uid
  25. :param head_vid: 相关推荐头部视频id type-int
  26. :param videos: 当前相关推荐结果 type-list
  27. :param size: 返回视频个数 type-int
  28. :return: rank_result
  29. """
  30. # 获取头部视频对应的相关性视频
  31. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  32. redis_helper = RedisHelper()
  33. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  34. if relevant_videos is None:
  35. # 该视频没有指定的相关性视频
  36. return videos
  37. relevant_videos = json.loads(relevant_videos)
  38. # 按照指定顺序排序
  39. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  40. # 过滤
  41. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  42. filter_helper = FilterVideos(request_id=request_id, app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  43. filtered_ids = filter_helper.filter_videos()
  44. if filtered_ids is None:
  45. return videos
  46. # 获取生效中的视频
  47. now = int(time.time())
  48. relevant_videos_in_effect = [
  49. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  50. 'abCode': config_.AB_CODE['relevant_video_op']}
  51. for item in relevant_videos_sorted
  52. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  53. ]
  54. if len(relevant_videos_in_effect) == 0:
  55. return videos
  56. # 与现有排序结果 进行合并重排
  57. # 获取现有排序结果中流量池视频 及其位置
  58. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  59. flow_pool_videos = []
  60. other_videos = []
  61. for i, item in enumerate(videos):
  62. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  63. flow_pool_videos.append((i, item))
  64. elif item.get('videoId') not in relevant_ids:
  65. other_videos.append(item)
  66. else:
  67. continue
  68. # 重排,保持流量池视频位置不变
  69. rank_result = relevant_videos_in_effect + other_videos
  70. for i, item in flow_pool_videos:
  71. rank_result.insert(i, item)
  72. return rank_result[:size]
  73. def video_position_recommend(request_id, mid, uid, app_type, videos):
  74. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  75. # algo_type=algo_type, client_info=client_info)
  76. redis_helper = RedisHelper()
  77. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  78. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  79. if pos1_vids is not None:
  80. pos1_vids = ast.literal_eval(pos1_vids)
  81. if pos2_vids is not None:
  82. pos2_vids = ast.literal_eval(pos2_vids)
  83. pos1_vids = [] if pos1_vids is None else pos1_vids
  84. pos2_vids = [] if pos2_vids is None else pos2_vids
  85. pos1_vids = [int(i) for i in pos1_vids]
  86. pos2_vids = [int(i) for i in pos2_vids]
  87. filter_1 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  88. filter_2 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  89. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  90. gevent.joinall(t)
  91. filted_list = [i.get() for i in t]
  92. pos1_vids = filted_list[0]
  93. pos2_vids = filted_list[1]
  94. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  95. if pos1_vids is not None and len(pos1_vids) >0 :
  96. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  97. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  98. if pos2_vids is not None and len(pos2_vids) >0 :
  99. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  100. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  101. return videos[:10]
  102. def positon_duplicate(pos1_vids, pos2_vids, videos):
  103. s = set()
  104. if pos1_vids is not None and len(pos1_vids) >0:
  105. s.add(int(pos1_vids[0]))
  106. if pos2_vids is not None and len(pos2_vids) >0:
  107. s.add(int(pos2_vids[0]))
  108. l = []
  109. for item in videos:
  110. if item['videoId'] in s:
  111. continue
  112. else:
  113. l.append(item)
  114. return l
  115. def video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info, expire_time=24*3600,
  116. ab_code=config_.AB_CODE['initial'], rule_key='', no_op_flag=False, old_video_index=-1, video_id=None,
  117. params=None):
  118. """
  119. 首页线上推荐逻辑
  120. :param request_id: request_id
  121. :param mid: mid type-string
  122. :param uid: uid type-string
  123. :param size: 请求视频数量 type-int
  124. :param top_K: 保证topK为召回池视频 type-int
  125. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  126. :param app_type: 产品标识 type-int
  127. :param algo_type: 算法类型 type-string
  128. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  129. :param expire_time: 末位视频记录redis过期时间
  130. :param ab_code: AB实验code
  131. :param video_id: 相关推荐头部视频id
  132. :param params:
  133. :return:
  134. """
  135. # ####### 多进程召回
  136. start_recall = time.time()
  137. # log_.info('====== recall')
  138. '''
  139. cores = multiprocessing.cpu_count()
  140. pool = multiprocessing.Pool(processes=cores)
  141. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  142. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  143. pool_list = [
  144. # rov召回池
  145. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  146. # 流量池
  147. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  148. ]
  149. recall_result_list = [p.get() for p in pool_list]
  150. pool.close()
  151. pool.join()
  152. '''
  153. recall_result_list = []
  154. pool_recall = PoolRecall(request_id=request_id,
  155. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  156. client_info=client_info, rule_key=rule_key, no_op_flag=no_op_flag,
  157. params=params)
  158. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  159. # 小时级实验
  160. if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()]:
  161. t = [gevent.spawn(pool_recall.rule_recall_by_h, size, expire_time),
  162. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  163. gevent.spawn(pool_recall.flow_pool_recall, size)]
  164. # 小时级实验
  165. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  166. t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  167. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  168. gevent.spawn(pool_recall.flow_pool_recall, size)]
  169. # 地域分组实验
  170. elif ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  171. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  172. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time)]
  173. else:
  174. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  175. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  176. gevent.spawn(pool_recall.flow_pool_recall, size)]
  177. # 最惊奇相关推荐实验
  178. elif ab_code == config_.AB_CODE['top_video_relevant_appType_19']:
  179. t = [gevent.spawn(pool_recall.relevant_recall_19, video_id, size, expire_time),
  180. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  181. # 最惊奇完整影视实验
  182. elif ab_code == config_.AB_CODE['whole_movies']:
  183. t = [gevent.spawn(pool_recall.rov_pool_recall_19, size, expire_time)]
  184. # 最惊奇/老好看实验
  185. elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  186. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  187. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  188. # 天级实验
  189. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  190. t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  191. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  192. gevent.spawn(pool_recall.flow_pool_recall, size)]
  193. # 老视频实验
  194. # elif ab_code in [config_.AB_CODE['old_video']]:
  195. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  196. # gevent.spawn(pool_recall.flow_pool_recall, size),
  197. # gevent.spawn(pool_recall.old_videos_recall, size)]
  198. else:
  199. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  200. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  201. gevent.spawn(pool_recall.flow_pool_recall, size)]
  202. gevent.joinall(t)
  203. recall_result_list = [i.get() for i in t]
  204. # end_recall = time.time()
  205. log_.info({
  206. 'logTimestamp': int(time.time() * 1000),
  207. 'request_id': request_id,
  208. 'mid': mid,
  209. 'uid': uid,
  210. 'operation': 'recall',
  211. 'recall_result': recall_result_list,
  212. 'executeTime': (time.time() - start_recall) * 1000
  213. })
  214. # ####### 排序
  215. start_rank = time.time()
  216. # log_.info('====== rank')
  217. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  218. if ab_code in [
  219. config_.AB_CODE['rov_rank_appType_18_19'],
  220. config_.AB_CODE['rov_rank_appType_19'],
  221. config_.AB_CODE['top_video_relevant_appType_19']
  222. ]:
  223. data = {
  224. 'rov_pool_recall': recall_result_list[0],
  225. 'flow_pool_recall': recall_result_list[1]
  226. }
  227. else:
  228. data = {
  229. 'rov_pool_recall': recall_result_list[0],
  230. 'flow_pool_recall': []
  231. }
  232. else:
  233. if recall_result_list[1]:
  234. redis_helper = RedisHelper()
  235. quick_flow_pool_P = redis_helper.get_data_from_redis(
  236. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  237. )
  238. if quick_flow_pool_P:
  239. flow_pool_P = quick_flow_pool_P
  240. data = {
  241. 'rov_pool_recall': recall_result_list[0],
  242. 'flow_pool_recall': recall_result_list[1]
  243. }
  244. else:
  245. data = {
  246. 'rov_pool_recall': recall_result_list[0],
  247. 'flow_pool_recall': recall_result_list[2]
  248. }
  249. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  250. # 老视频实验
  251. # if ab_code in [config_.AB_CODE['old_video']]:
  252. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  253. # size=size, top_K=top_K, old_video_index=old_video_index)
  254. # end_rank = time.time()
  255. log_.info({
  256. 'logTimestamp': int(time.time() * 1000),
  257. 'request_id': request_id,
  258. 'mid': mid,
  259. 'uid': uid,
  260. 'operation': 'rank',
  261. 'rank_result': rank_result,
  262. 'executeTime': (time.time() - start_rank) * 1000
  263. })
  264. if not rank_result:
  265. # 兜底策略
  266. # log_.info('====== bottom strategy')
  267. start_bottom = time.time()
  268. rank_result = bottom_strategy(request_id=request_id, size=size, app_type=app_type, ab_code=ab_code, params=params)
  269. # end_bottom = time.time()
  270. log_.info({
  271. 'logTimestamp': int(time.time() * 1000),
  272. 'request_id': request_id,
  273. 'mid': mid,
  274. 'uid': uid,
  275. 'operation': 'bottom',
  276. 'bottom_result': rank_result,
  277. 'executeTime': (time.time() - start_bottom) * 1000
  278. })
  279. return rank_result, last_rov_recall_key
  280. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  281. """
  282. 对排序后的结果 按照AB实验进行对应的分组操作
  283. :param rank_result: 排序后的结果
  284. :param ab_code_list: 此次请求参与的 ab实验组
  285. :param app_type: 产品标识
  286. :param mid: mid
  287. :param uid: uid
  288. :param kwargs: 其他参数
  289. :return:
  290. """
  291. # ####### 视频宽高比AB实验
  292. # 对内容精选进行 视频宽高比分发实验
  293. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  294. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  295. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  296. # app_type, mid, uid, rank_result))
  297. # 按position位置排序
  298. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  299. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  300. print('===========================')
  301. print(rank_result)
  302. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  303. app_type, mid, uid, rank_result))
  304. # 相关推荐强插
  305. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  306. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  307. # head_vid = kwargs['head_vid']
  308. # size = kwargs['size']
  309. # rank_result = relevant_video_top_recommend(
  310. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  311. # )
  312. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  313. # app_type, mid, uid, head_vid, rank_result))
  314. return rank_result
  315. def update_redis_data(result, app_type, mid, last_rov_recall_key, top_K, expire_time=24*3600):
  316. """
  317. 根据最终的排序结果更新相关redis数据
  318. :param result: 排序结果
  319. :param app_type: 产品标识
  320. :param mid: mid
  321. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  322. :param top_K: 保证topK为召回池视频 type-int
  323. :param expire_time: 末位视频记录redis过期时间
  324. :return: None
  325. """
  326. # ####### redis数据刷新
  327. try:
  328. redis_helper = RedisHelper()
  329. # log_.info('====== update redis')
  330. if mid and mid != 'null':
  331. # mid为空时,不做预曝光和定位数据更新
  332. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  333. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  334. preview_video_ids = [int(item['videoId']) for item in result]
  335. if preview_video_ids:
  336. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  337. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  338. # log_.info('preview redis update success!')
  339. # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  340. rov_recall_video = [item['videoId'] for item in result[:top_K]
  341. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  342. if len(rov_recall_video) > 0:
  343. if app_type == config_.APP_TYPE['APP']:
  344. key_name = config_.UPDATE_ROV_KEY_NAME_APP
  345. else:
  346. key_name = config_.UPDATE_ROV_KEY_NAME
  347. if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  348. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  349. expire_time=expire_time)
  350. # log_.info('last video redis update success!')
  351. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  352. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  353. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  354. if flow_recall_video:
  355. update_local_distribute_count(flow_recall_video)
  356. # log_.info('update local distribute count success!')
  357. # 限流视频分发数记录
  358. if app_type == config_.APP_TYPE['APP']:
  359. # APP 不计入
  360. return
  361. limit_video_id_list = redis_helper.get_data_from_set(
  362. key_name=f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_SET}{datetime.today().strftime('%Y%m%d')}"
  363. )
  364. if limit_video_id_list is not None:
  365. limit_video_id_list = [int(item) for item in limit_video_id_list]
  366. for item in result:
  367. video_id = item['videoId']
  368. if video_id in limit_video_id_list:
  369. key_name = f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_DISTRIBUTE_COUNT}{video_id}"
  370. redis_helper.setnx_key(key_name=key_name, value=0, expire_time=24*2600)
  371. redis_helper.incr_key(key_name=key_name, amount=1, expire_time=24*3600)
  372. except Exception as e:
  373. log_.error("update redis data fail!")
  374. log_.error(traceback.format_exc())
  375. def update_local_distribute_count(videos):
  376. """
  377. 更新本地分发数
  378. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  379. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  380. :return:
  381. """
  382. try:
  383. redis_helper = RedisHelper()
  384. for item in videos:
  385. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  386. # 本地记录的分发数 - 1
  387. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  388. # if redis_helper.key_exists(key_name=key_name):
  389. # # 该视频本地有记录,本地记录的分发数 - 1
  390. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  391. # else:
  392. # # 该视频本地无记录,接口获取的分发数 - 1
  393. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  394. except Exception as e:
  395. log_.error('update_local_distribute_count error...')
  396. log_.error(traceback.format_exc())
  397. def get_recommend_params(recommend_type, ab_exp_info, ab_info_data, page_type=0):
  398. """
  399. 根据实验分组给定对应的推荐参数
  400. :param recommend_type: 首页推荐和相关推荐区分参数(0-首页推荐,1-相关推荐)
  401. :param ab_exp_info: AB实验组参数
  402. :param ab_info_data: app实验组参数
  403. :param page_type: 页面区分参数,默认:0(首页)
  404. :return:
  405. """
  406. top_K = config_.K
  407. flow_pool_P = config_.P
  408. # 不获取人工干预数据标记
  409. no_op_flag = False
  410. old_video_index = -1
  411. if not ab_exp_info:
  412. ab_code = config_.AB_CODE['initial']
  413. expire_time = 24 * 3600
  414. rule_key = config_.RULE_KEY['initial']
  415. # old_video_index = -1
  416. else:
  417. ab_exp_code_list = []
  418. config_value_dict = {}
  419. for _, item in ab_exp_info.items():
  420. if not item:
  421. continue
  422. for ab_item in item:
  423. ab_exp_code = ab_item.get('abExpCode', None)
  424. if not ab_exp_code:
  425. continue
  426. ab_exp_code_list.append(str(ab_exp_code))
  427. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  428. # 推荐条数 10->4 实验
  429. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  430. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  431. # if config_value:
  432. # config_value = eval(str(config_value))
  433. # else:
  434. # config_value = {}
  435. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  436. # size = int(config_value.get('size', 4))
  437. # top_K = int(config_value.get('K', 3))
  438. # flow_pool_P = float(config_value.get('P', 0.3))
  439. # else:
  440. # size = size
  441. # top_K = config_.K
  442. # flow_pool_P = config_.P
  443. # 算法实验相对对照组
  444. # if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  445. # ab_code = config_.AB_CODE['ab_initial']
  446. # expire_time = 24 * 3600
  447. # rule_key = config_.RULE_KEY['initial']
  448. # no_op_flag = True
  449. # 小时级更新-规则1 实验
  450. # elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  451. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  452. # expire_time = 3600
  453. # rule_key = config_.RULE_KEY['rule_rank1']
  454. # no_op_flag = True
  455. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  456. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  457. # expire_time = 3600
  458. # rule_key = config_.RULE_KEY['rule_rank2']
  459. # elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  460. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  461. # expire_time = 3600
  462. # rule_key = config_.RULE_KEY['rule_rank3']
  463. # no_op_flag = True
  464. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  465. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  466. # expire_time = 3600
  467. # rule_key = config_.RULE_KEY['rule_rank4']
  468. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  469. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  470. # expire_time = 3600
  471. # rule_key = config_.RULE_KEY['rule_rank5']
  472. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  473. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  474. # expire_time = 24 * 3600
  475. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  476. # no_op_flag = True
  477. # if config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  478. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  479. # expire_time = 3600
  480. # rule_key = config_.RULE_KEY['rule_rank6']
  481. # no_op_flag = True
  482. # elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  483. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  484. # expire_time = 24 * 3600
  485. # rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  486. # no_op_flag = True
  487. # elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  488. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  489. # expire_time = 3600
  490. # rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  491. # no_op_flag = True
  492. # elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  493. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  494. # expire_time = 3600
  495. # rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  496. # no_op_flag = True
  497. # elif config_.AB_EXP_CODE['24h_rule_rank2'] in ab_exp_code_list:
  498. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank2')
  499. # expire_time = 3600
  500. # rule_key = config_.RULE_KEY_24H['24h_rule_rank2']
  501. # no_op_flag = True
  502. # elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  503. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  504. # expire_time = 3600
  505. # rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  506. # no_op_flag = True
  507. if config_.AB_EXP_CODE['region_rule_rank3'] in ab_exp_code_list or\
  508. config_.AB_EXP_CODE['region_rule_rank3_appType_5'] in ab_exp_code_list or\
  509. config_.AB_EXP_CODE['region_rule_rank3_appType_19'] in ab_exp_code_list or\
  510. config_.AB_EXP_CODE['region_rule_rank3_appType_4'] in ab_exp_code_list or\
  511. config_.AB_EXP_CODE['region_rule_rank3_appType_6'] in ab_exp_code_list or\
  512. config_.AB_EXP_CODE['region_rule_rank3_appType_18'] in ab_exp_code_list:
  513. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  514. expire_time = 3600
  515. rule_key = config_.RULE_KEY_REGION['region_rule_rank3']
  516. no_op_flag = True
  517. elif config_.AB_EXP_CODE['region_rule_rank4'] in ab_exp_code_list:
  518. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  519. expire_time = 3600
  520. rule_key = config_.RULE_KEY_REGION['region_rule_rank4']
  521. no_op_flag = True
  522. else:
  523. ab_code = config_.AB_CODE['initial']
  524. expire_time = 24 * 3600
  525. rule_key = config_.RULE_KEY['initial']
  526. # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  527. if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  528. ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  529. expire_time = 3600
  530. flow_pool_P = config_.P_18_19
  531. no_op_flag = True
  532. elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  533. ab_code = config_.AB_CODE['rov_rank_appType_19']
  534. expire_time = 3600
  535. top_K = 0
  536. flow_pool_P = config_.P_18_19
  537. no_op_flag = True
  538. elif config_.AB_EXP_CODE['top_video_relevant_appType_19'] in ab_exp_code_list and page_type == 2:
  539. ab_code = config_.AB_CODE['top_video_relevant_appType_19']
  540. expire_time = 3600
  541. top_K = 1
  542. flow_pool_P = config_.P_18_19
  543. no_op_flag = True
  544. # 票圈最惊奇完整影视资源实验
  545. elif config_.AB_EXP_CODE['whole_movies'] in ab_exp_code_list:
  546. ab_code = config_.AB_CODE['whole_movies']
  547. expire_time = 24 * 3600
  548. no_op_flag = True
  549. # 老视频实验
  550. # if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  551. # ab_code = config_.AB_CODE['old_video']
  552. # no_op_flag = True
  553. # old_video_index = 2
  554. # else:
  555. # old_video_index = -1
  556. # APP实验组
  557. if ab_info_data:
  558. ab_info_app = {}
  559. for page_code, item in json.loads(ab_info_data).items():
  560. if not item:
  561. continue
  562. ab_info_code = item.get('eventId', None)
  563. if ab_info_code:
  564. ab_info_app[page_code] = ab_info_code
  565. print(f"======{ab_info_app}")
  566. # 首页推荐
  567. if recommend_type == 0:
  568. if config_.APP_AB_CODE['10003'] == ab_info_app.get('10003', None):
  569. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  570. expire_time = 3600
  571. rule_key = config_.RULE_KEY_REGION['region_rule_rank3']
  572. no_op_flag = True
  573. # 相关推荐
  574. elif recommend_type == 1:
  575. if config_.APP_AB_CODE['10037'] == ab_info_app.get('10037', None):
  576. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  577. expire_time = 3600
  578. rule_key = config_.RULE_KEY_REGION['region_rule_rank3']
  579. no_op_flag = True
  580. return top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index
  581. def video_homepage_recommend(request_id, mid, uid, size, app_type, algo_type,
  582. client_info, ab_exp_info, params, ab_info_data):
  583. """
  584. 首页线上推荐逻辑
  585. :param request_id: request_id
  586. :param mid: mid type-string
  587. :param uid: uid type-string
  588. :param size: 请求视频数量 type-int
  589. :param app_type: 产品标识 type-int
  590. :param algo_type: 算法类型 type-string
  591. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  592. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  593. :param params:
  594. :param ab_info_data: app实验分组参数
  595. :return:
  596. """
  597. # 对 vlog 切换10%的流量做实验
  598. # 对mid进行哈希
  599. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  600. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  601. # # 简单召回 - 排序 - 兜底
  602. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  603. # algo_type=algo_type, client_info=client_info,
  604. # expire_time=3600,
  605. # ab_code=config_.AB_CODE['rank_by_h'])
  606. # # ab-test
  607. # result = ab_test_op(rank_result=rank_result,
  608. # ab_code_list=[config_.AB_CODE['position_insert']],
  609. # app_type=app_type, mid=mid, uid=uid)
  610. # # redis数据刷新
  611. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  612. # expire_time=3600)
  613. # if app_type == config_.APP_TYPE['APP']:
  614. # # 票圈视频APP
  615. # top_K = config_.K
  616. # flow_pool_P = config_.P
  617. # # 简单召回 - 排序 - 兜底
  618. # rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  619. # mid=mid, uid=uid, app_type=app_type,
  620. # size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  621. # algo_type=algo_type, client_info=client_info,
  622. # expire_time=12 * 3600, params=params)
  623. # # ab-test
  624. # # result = ab_test_op(rank_result=rank_result,
  625. # # ab_code_list=[config_.AB_CODE['position_insert']],
  626. # # app_type=app_type, mid=mid, uid=uid)
  627. # # redis数据刷新
  628. # update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  629. # top_K=top_K, expire_time=12 * 3600)
  630. #
  631. # else:
  632. param_st = time.time()
  633. # 特殊mid推荐处理
  634. if mid in get_special_mid_list() or app_type == config_.APP_TYPE['PIAO_QUAN_VIDEO_PLUS']:
  635. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  636. return rank_result
  637. # 普通mid推荐处理
  638. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  639. get_recommend_params(recommend_type=0, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data)
  640. log_.info({
  641. 'logTimestamp': int(time.time() * 1000),
  642. 'request_id': request_id,
  643. 'app_type': app_type,
  644. 'mid': mid,
  645. 'uid': uid,
  646. 'operation': 'get_recommend_params',
  647. 'executeTime': (time.time() - param_st) * 1000
  648. })
  649. # 简单召回 - 排序 - 兜底
  650. get_result_st = time.time()
  651. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  652. mid=mid, uid=uid, app_type=app_type,
  653. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  654. algo_type=algo_type, client_info=client_info,
  655. ab_code=ab_code, expire_time=expire_time,
  656. rule_key=rule_key, no_op_flag=no_op_flag,
  657. old_video_index=old_video_index,
  658. params=params)
  659. log_.info({
  660. 'logTimestamp': int(time.time() * 1000),
  661. 'request_id': request_id,
  662. 'app_type': app_type,
  663. 'mid': mid,
  664. 'uid': uid,
  665. 'operation': 'get_recommend_result',
  666. 'executeTime': (time.time() - get_result_st) * 1000
  667. })
  668. # ab-test
  669. # result = ab_test_op(rank_result=rank_result,
  670. # ab_code_list=[config_.AB_CODE['position_insert']],
  671. # app_type=app_type, mid=mid, uid=uid)
  672. # redis数据刷新
  673. update_redis_st = time.time()
  674. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  675. top_K=top_K)
  676. log_.info({
  677. 'logTimestamp': int(time.time() * 1000),
  678. 'request_id': request_id,
  679. 'app_type': app_type,
  680. 'mid': mid,
  681. 'uid': uid,
  682. 'operation': 'update_redis_data',
  683. 'executeTime': (time.time() - update_redis_st) * 1000
  684. })
  685. return rank_result
  686. def video_relevant_recommend(request_id, video_id, mid, uid, size, app_type, ab_exp_info, client_info,
  687. page_type, params, ab_info_data):
  688. """
  689. 相关推荐逻辑
  690. :param request_id: request_id
  691. :param video_id: 相关推荐的头部视频id
  692. :param mid: mid type-string
  693. :param uid: uid type-string
  694. :param size: 请求视频数量 type-int
  695. :param app_type: 产品标识 type-int
  696. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  697. :param client_info: 地域参数
  698. :param page_type: 页面区分参数 1:详情页;2:分享页
  699. :param params:
  700. :param ab_info_data: app实验分组参数
  701. :return: videos type-list
  702. """
  703. param_st = time.time()
  704. # 特殊mid推荐处理
  705. if mid in get_special_mid_list() or app_type == config_.APP_TYPE['PIAO_QUAN_VIDEO_PLUS']:
  706. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  707. return rank_result
  708. # 普通mid推荐处理
  709. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  710. get_recommend_params(recommend_type=1, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data, page_type=page_type)
  711. log_.info({
  712. 'logTimestamp': int(time.time() * 1000),
  713. 'request_id': request_id,
  714. 'app_type': app_type,
  715. 'mid': mid,
  716. 'uid': uid,
  717. 'operation': 'get_recommend_params',
  718. 'executeTime': (time.time() - param_st) * 1000
  719. })
  720. # 简单召回 - 排序 - 兜底
  721. get_result_st = time.time()
  722. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  723. mid=mid, uid=uid, app_type=app_type,
  724. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  725. algo_type='', client_info=client_info,
  726. ab_code=ab_code, expire_time=expire_time,
  727. rule_key=rule_key, no_op_flag=no_op_flag,
  728. old_video_index=old_video_index, video_id=video_id,
  729. params=params)
  730. log_.info({
  731. 'logTimestamp': int(time.time() * 1000),
  732. 'request_id': request_id,
  733. 'app_type': app_type,
  734. 'mid': mid,
  735. 'uid': uid,
  736. 'operation': 'get_recommend_result',
  737. 'executeTime': (time.time() - get_result_st) * 1000
  738. })
  739. # ab-test
  740. # result = ab_test_op(rank_result=rank_result,
  741. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  742. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  743. # redis数据刷新
  744. update_redis_st = time.time()
  745. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  746. top_K=top_K)
  747. log_.info({
  748. 'logTimestamp': int(time.time() * 1000),
  749. 'request_id': request_id,
  750. 'app_type': app_type,
  751. 'mid': mid,
  752. 'uid': uid,
  753. 'operation': 'update_redis_data',
  754. 'executeTime': (time.time() - update_redis_st) * 1000
  755. })
  756. return rank_result
  757. def special_mid_recommend(request_id, mid, uid, app_type, size,
  758. ab_code=config_.AB_CODE['special_mid'],
  759. push_from=config_.PUSH_FROM['special_mid'],
  760. expire_time=24*3600):
  761. redis_helper = RedisHelper()
  762. # 特殊mid推荐指定视频列表
  763. pool_recall = PoolRecall(request_id=request_id, app_type=app_type,
  764. mid=mid, uid=uid, ab_code=ab_code)
  765. # 获取相关redis key
  766. special_key_name, redis_date = pool_recall.get_pool_redis_key(pool_type='special')
  767. # 用户上一次在rov召回池对应的位置
  768. last_special_recall_key = f'{config_.LAST_VIDEO_FROM_ROV_POOL_PREFIX}{app_type}.{mid}.{redis_date}'
  769. value = redis_helper.get_data_from_redis(last_special_recall_key)
  770. if value:
  771. idx = redis_helper.get_index_with_data(special_key_name, value)
  772. if not idx:
  773. idx = 0
  774. else:
  775. idx += 1
  776. else:
  777. idx = 0
  778. recall_result = []
  779. # 每次获取的视频数
  780. get_size = size * 5
  781. # 记录获取频次
  782. freq = 0
  783. while len(recall_result) < size:
  784. freq += 1
  785. if freq > config_.MAX_FREQ_FROM_ROV_POOL:
  786. break
  787. # 获取数据
  788. data = redis_helper.get_data_zset_with_index(key_name=special_key_name,
  789. start=idx, end=idx + get_size - 1,
  790. with_scores=True)
  791. if not data:
  792. break
  793. # 获取视频id,并转换类型为int,并存储为key-value{videoId: score}
  794. # 添加视频源参数 pushFrom, abCode
  795. temp_result = [{'videoId': int(value[0]), 'rovScore': value[1],
  796. 'pushFrom': push_from, 'abCode': ab_code}
  797. for value in data]
  798. recall_result.extend(temp_result)
  799. idx += get_size
  800. # 将此次获取的末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  801. if mid and recall_result:
  802. # mid为空时,不做记录
  803. redis_helper.set_data_to_redis(key_name=last_special_recall_key,
  804. value=recall_result[:size][-1]['videoId'],
  805. expire_time=expire_time)
  806. return recall_result[:size]
  807. def get_special_mid_list():
  808. redis_helper = RedisHelper()
  809. special_mid_list = redis_helper.get_data_from_set(key_name=config_.KEY_NAME_SPECIAL_MID)
  810. if special_mid_list:
  811. return special_mid_list
  812. else:
  813. return []
  814. if __name__ == '__main__':
  815. videos = [
  816. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  817. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  818. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  819. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  820. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  821. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  822. "pushFrom": "flow_pool", "abCode": 10000},
  823. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  824. "abCode": 10000},
  825. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  826. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  827. "pushFrom": "flow_pool", "abCode": 10000},
  828. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  829. ]
  830. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  831. print(res)