video_rank.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 最惊奇相关推荐相似视频
  23. relevant_recall = [item for item in data['rov_pool_recall']
  24. if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  25. relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  26. # 最惊奇完整影视视频
  27. whole_movies_recall = [item for item in data['rov_pool_recall']
  28. if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  29. whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  30. # 最惊奇影视解说视频
  31. talk_videos_recall = [item for item in data['rov_pool_recall']
  32. if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  33. talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  34. # 小时级更新数据
  35. h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  36. h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 地域分组小时级规则更新数据
  38. region_h_recall = [item for item in data['rov_pool_recall']
  39. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  40. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  41. # 地域分组小时级更新24h规则更新数据
  42. region_24h_recall = [item for item in data['rov_pool_recall']
  43. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  44. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  45. # 地域分组天级规则更新数据
  46. region_day_recall = [item for item in data['rov_pool_recall']
  47. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  48. region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  49. # 相对24h规则更新数据
  50. rule_24h_recall = [item for item in data['rov_pool_recall']
  51. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  52. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  53. # 相对24h规则筛选后剩余更新数据
  54. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  55. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  56. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  57. # 相对48h规则更新数据
  58. rule_48h_recall = [item for item in data['rov_pool_recall']
  59. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  60. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  61. # 相对48h规则筛选后剩余更新数据
  62. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  63. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  64. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  65. # 天级规则更新数据
  66. day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  67. day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  68. # ROV召回池
  69. rov_initial_recall = [
  70. item for item in data['rov_pool_recall']
  71. if item.get('pushFrom') not in
  72. [config_.PUSH_FROM['top_video_relevant_appType_19'],
  73. config_.PUSH_FROM['rov_recall_h'],
  74. config_.PUSH_FROM['rov_recall_region_h'],
  75. config_.PUSH_FROM['rov_recall_region_24h'],
  76. config_.PUSH_FROM['rov_recall_region_day'],
  77. config_.PUSH_FROM['rov_recall_24h'],
  78. config_.PUSH_FROM['rov_recall_24h_dup'],
  79. config_.PUSH_FROM['rov_recall_48h'],
  80. config_.PUSH_FROM['rov_recall_48h_dup'],
  81. config_.PUSH_FROM['rov_recall_day'],
  82. config_.PUSH_FROM['whole_movies'],
  83. config_.PUSH_FROM['talk_videos']]
  84. ]
  85. rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  86. rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  87. region_h_recall_rank + region_24h_recall_rank + region_day_recall_rank + \
  88. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  89. rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  90. day_recall_rank + rov_initial_recall_rank
  91. # 流量池
  92. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  93. # 对各路召回的视频进行去重
  94. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  95. top_K=top_K)
  96. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  97. # rov_recall_rank, flow_recall_rank))
  98. rank_result = relevant_recall_rank
  99. # 从ROV召回池中获取top k
  100. if len(rov_recall_rank) > 0:
  101. rank_result.extend(rov_recall_rank[:top_K])
  102. rov_recall_rank = rov_recall_rank[top_K:]
  103. else:
  104. rank_result.extend(flow_recall_rank[:top_K])
  105. flow_recall_rank = flow_recall_rank[top_K:]
  106. # 按概率 p 及score排序获取 size - k 个视频
  107. i = 0
  108. while i < size - top_K:
  109. # 随机生成[0, 1)浮点数
  110. rand = random.random()
  111. # log_.info('rand: {}'.format(rand))
  112. if rand < flow_pool_P:
  113. if flow_recall_rank:
  114. rank_result.append(flow_recall_rank[0])
  115. flow_recall_rank.remove(flow_recall_rank[0])
  116. else:
  117. rank_result.extend(rov_recall_rank[:size - top_K - i])
  118. return rank_result[:size]
  119. else:
  120. if rov_recall_rank:
  121. rank_result.append(rov_recall_rank[0])
  122. rov_recall_rank.remove(rov_recall_rank[0])
  123. else:
  124. rank_result.extend(flow_recall_rank[:size - top_K - i])
  125. return rank_result[:size]
  126. i += 1
  127. return rank_result[:size]
  128. def remove_duplicate(rov_recall, flow_recall, top_K):
  129. """
  130. 对多路召回的视频去重
  131. 去重原则:
  132. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  133. :param rov_recall: ROV召回池-已排序
  134. :param flow_recall: 流量池-已排序
  135. :param top_K: 保证topK为召回池视频 type-int
  136. :return:
  137. """
  138. flow_recall_result = []
  139. rov_recall_remove = []
  140. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  141. # rov_recall topK
  142. for item in rov_recall[:top_K]:
  143. if item['videoId'] in flow_recall_video_ids:
  144. flow_recall_video_ids.remove(item['videoId'])
  145. # other
  146. for item in rov_recall[top_K:]:
  147. if item['videoId'] in flow_recall_video_ids:
  148. rov_recall_remove.append(item)
  149. # rov recall remove
  150. for item in rov_recall_remove:
  151. rov_recall.remove(item)
  152. # flow recall remove
  153. for item in flow_recall:
  154. if item['videoId'] in flow_recall_video_ids:
  155. flow_recall_result.append(item)
  156. return rov_recall, flow_recall_result
  157. def bottom_strategy(request_id, size, app_type, ab_code, params):
  158. """
  159. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  160. :param request_id: request_id
  161. :param size: 需要获取的视频数
  162. :param app_type: 产品标识 type-int
  163. :param ab_code: abCode
  164. :param params:
  165. :return:
  166. """
  167. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  168. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  169. redis_helper = RedisHelper(params=params)
  170. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  171. if not data:
  172. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  173. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  174. # 二次兜底
  175. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  176. return bottom_data
  177. # 视频状态过滤采用离线定时过滤方案
  178. # 状态过滤
  179. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  180. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  181. if len(data) > size:
  182. random_data = numpy.random.choice(data, size, False)
  183. else:
  184. random_data = data
  185. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  186. for item in random_data]
  187. return bottom_data
  188. def bottom_strategy_last(size, app_type, ab_code, params):
  189. """
  190. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  191. :param size: 需要获取的视频数
  192. :param app_type: 产品标识 type-int
  193. :param ab_code: abCode
  194. :param params:
  195. :return:
  196. """
  197. redis_helper = RedisHelper(params=params)
  198. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  199. random_data = numpy.random.choice(bottom_data, size * 30, False)
  200. # 视频状态过滤采用离线定时过滤方案
  201. # 状态过滤
  202. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  203. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  204. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  205. for video_id in random_data[:size]]
  206. return bottom_data
  207. def video_rank_by_w_h_rate(videos):
  208. """
  209. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  210. :param videos:
  211. :return:
  212. """
  213. redis_helper = RedisHelper()
  214. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  215. top_2_push_from_flag = [False, False]
  216. for i, video in enumerate(videos[:2]):
  217. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  218. top_2_push_from_flag[i] = True
  219. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  220. return videos
  221. # ##### 判断前两个视频是否为横屏
  222. top_2_w_h_rate_flag = [False, False]
  223. for i, video in enumerate(videos[:2]):
  224. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  225. # 视频来源为置顶 或 流量池时,不做判断
  226. top_2_w_h_rate_flag[i] = True
  227. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  228. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  229. w_h_rate = redis_helper.get_score_with_value(
  230. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  231. if w_h_rate is not None:
  232. top_2_w_h_rate_flag[i] = True
  233. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  234. # 视频来源为 二层兜底时,判断是否是横屏
  235. w_h_rate = redis_helper.get_score_with_value(
  236. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  237. if w_h_rate is not None:
  238. top_2_w_h_rate_flag[i] = True
  239. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  240. return videos
  241. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  242. # 记录横屏视频位置
  243. horizontal_video_index = []
  244. # 记录流量池视频位置
  245. flow_video_index = []
  246. # 记录置顶视频位置
  247. top_video_index = []
  248. for i, video in enumerate(videos):
  249. # 视频来源为置顶
  250. if video['pushFrom'] == config_.PUSH_FROM['top']:
  251. top_video_index.append(i)
  252. # 视频来源为流量池
  253. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  254. flow_video_index.append(i)
  255. # 视频来源为rov召回池 或 一层兜底
  256. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  257. w_h_rate = redis_helper.get_score_with_value(
  258. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  259. if w_h_rate is not None:
  260. horizontal_video_index.append(i)
  261. else:
  262. continue
  263. # 视频来源为 二层兜底
  264. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  265. w_h_rate = redis_helper.get_score_with_value(
  266. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  267. if w_h_rate is not None:
  268. horizontal_video_index.append(i)
  269. else:
  270. continue
  271. # 重新排序
  272. top2_index = []
  273. for i in range(2):
  274. if i in top_video_index:
  275. top2_index.append(i)
  276. elif i in flow_video_index:
  277. top2_index.append(i)
  278. flow_video_index.remove(i)
  279. elif i in horizontal_video_index:
  280. top2_index.append(i)
  281. horizontal_video_index.remove(i)
  282. elif len(horizontal_video_index) > 0:
  283. # 调整横屏视频到第一位
  284. top2_index.append(horizontal_video_index[0])
  285. # 从横屏位置记录中移除
  286. horizontal_video_index.pop(0)
  287. elif i == 0:
  288. return videos
  289. # 重排
  290. flow_result = [videos[i] for i in flow_video_index]
  291. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  292. top2_result = []
  293. for i, j in enumerate(top2_index):
  294. item = videos[j]
  295. if i != j:
  296. # 修改abCode
  297. item['abCode'] = config_.AB_CODE['w_h_rate']
  298. top2_result.append(item)
  299. new_rank_result = top2_result
  300. for i in range(len(top2_index), len(videos)):
  301. if i in flow_video_index:
  302. new_rank_result.append(flow_result[0])
  303. flow_result.pop(0)
  304. else:
  305. new_rank_result.append(other_result[0])
  306. other_result.pop(0)
  307. return new_rank_result
  308. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  309. """
  310. 视频分发排序 - 包含老视频, 老视频插入固定位置
  311. :param rank_result: 排序后的结果
  312. :param size: 请求数
  313. :param old_video_index: 老视频插入的位置索引,默认为2
  314. :return: new_rank_result
  315. """
  316. if not old_video_recall:
  317. return rank_result
  318. if not rank_result:
  319. return old_video_recall[:size]
  320. # 视频去重
  321. rank_video_ids = [item['videoId'] for item in rank_result]
  322. old_video_remove = []
  323. for old_video in old_video_recall:
  324. if old_video['videoId'] in rank_video_ids:
  325. old_video_remove.append(old_video)
  326. for item in old_video_remove:
  327. old_video_recall.remove(item)
  328. if not old_video_recall:
  329. return rank_result
  330. # 插入老视频
  331. # 随机获取一个视频
  332. ind = random.randint(0, len(old_video_recall) - 1)
  333. old_video = old_video_recall[ind]
  334. # 插入
  335. if len(rank_result) < top_K:
  336. new_rank_result = rank_result + [old_video]
  337. else:
  338. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  339. if len(new_rank_result) > size:
  340. # 判断后两位视频来源
  341. push_from_1 = new_rank_result[-1]['pushFrom']
  342. push_from_2 = new_rank_result[-2]['pushFrom']
  343. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  344. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  345. return new_rank_result[:size]
  346. if __name__ == '__main__':
  347. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  348. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  349. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  350. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  351. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  352. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  353. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  354. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  355. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  356. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  357. res = video_rank_by_w_h_rate(videos=d_test)
  358. for tmp in res:
  359. print(tmp)