ad_recommend.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. import traceback
  2. import datetime
  3. from utils import RedisHelper
  4. from config import set_config
  5. from log import Log
  6. log_ = Log()
  7. config_ = set_config()
  8. redis_helper = RedisHelper()
  9. def get_params(ab_exp_info, ab_test_code):
  10. """
  11. 根据实验分组给定对应的参数
  12. :param ab_exp_info: AB实验组参数
  13. :param ab_test_code: 用户对应的ab组
  14. :return:
  15. """
  16. abtest_id, abtest_config_tag = None, None
  17. ad_abtest_id_list = [key.split('-')[0] for key in config_.AD_ABTEST_CONFIG]
  18. # 获取广告实验配置
  19. config_value_dict = {}
  20. if ab_exp_info:
  21. ab_exp_list = ab_exp_info.get('ab_test002', None)
  22. if ab_exp_list:
  23. for ab_item in ab_exp_list:
  24. ab_exp_code = ab_item.get('abExpCode', None)
  25. if not ab_exp_code:
  26. continue
  27. if ab_exp_code in ad_abtest_id_list:
  28. config_value = ab_item.get('configValue', None)
  29. if config_value:
  30. config_value_dict[str(ab_exp_code)] = eval(str(config_value))
  31. if len(config_value_dict) > 0:
  32. for ab_exp_code, config_value in config_value_dict.items():
  33. for tag, value in config_value.items():
  34. if ab_test_code in value:
  35. abtest_id = ab_exp_code
  36. abtest_config_tag = tag
  37. break
  38. return abtest_id, abtest_config_tag
  39. def get_threshold(abtest_id, abtest_config_tag, ab_test_code, mid_group, care_model_status, abtest_param):
  40. """获取对应的阈值"""
  41. # 判断是否是关怀模式实验
  42. care_model_status_param = abtest_param.get('care_model_status_param', None)
  43. care_model_ab_mid_group = abtest_param.get('care_model_ab_mid_group', [])
  44. if care_model_status_param is None:
  45. # 无关怀模式实验
  46. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  47. else:
  48. # 关怀模式实验
  49. if care_model_status is None or len(care_model_ab_mid_group) == 0 or care_model_status == 'null':
  50. # 参数缺失,走默认
  51. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  52. elif int(care_model_status) == int(care_model_status_param) and mid_group in care_model_ab_mid_group:
  53. # 实验匹配,获取对应的阈值
  54. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL
  55. else:
  56. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  57. threshold_key_name = f"{threshold_key_name_prefix}{abtest_id}:{abtest_config_tag}:{ab_test_code}:{mid_group}"
  58. threshold = redis_helper.get_data_from_redis(key_name=threshold_key_name)
  59. if threshold is None:
  60. threshold = 0
  61. else:
  62. threshold = float(threshold)
  63. return threshold
  64. def predict_mid_video_res(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status):
  65. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  66. user_data_key = abtest_param['user'].get('data')
  67. user_rule_key = abtest_param['user'].get('rule')
  68. video_data_key = abtest_param['video'].get('data')
  69. group_class_key = abtest_param.get('group_class_key')
  70. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  71. # 判断mid所属分组
  72. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  73. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  74. if mid_group is None:
  75. mid_group = 'mean_group'
  76. # 判断用户是否在免广告用户组列表中
  77. if mid_group in no_ad_mid_group_list:
  78. # 在免广告用户组列表中,则不出广告
  79. ad_predict = 1
  80. result = {
  81. 'mid_group': mid_group,
  82. 'ad_predict': ad_predict
  83. }
  84. else:
  85. # 获取用户组分享率
  86. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
  87. if not redis_helper.key_exists(group_share_rate_key):
  88. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  89. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
  90. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  91. # 获取视频分享率
  92. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
  93. if not redis_helper.key_exists(video_share_rate_key):
  94. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  95. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
  96. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  97. if video_share_rate is None:
  98. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  99. # 计算 mid-video 分享率
  100. if group_share_rate is None or video_share_rate is None:
  101. return None
  102. mid_video_predict_res = float(group_share_rate) * float(video_share_rate)
  103. # 获取对应的阈值
  104. threshold = get_threshold(
  105. abtest_id=abtest_id,
  106. abtest_config_tag=abtest_config_tag,
  107. ab_test_code=ab_test_code,
  108. mid_group=mid_group,
  109. care_model_status=care_model_status,
  110. abtest_param=abtest_param
  111. )
  112. # 阈值判断
  113. if mid_video_predict_res > threshold:
  114. # 大于阈值,出广告
  115. ad_predict = 2
  116. else:
  117. # 否则,不出广告
  118. ad_predict = 1
  119. result = {
  120. 'mid_group': mid_group,
  121. 'group_share_rate': group_share_rate,
  122. 'video_share_rate': video_share_rate,
  123. 'mid_video_predict_res': mid_video_predict_res,
  124. 'threshold': threshold,
  125. 'ad_predict': ad_predict}
  126. return result
  127. def predict_mid_video_res_with_add(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status):
  128. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  129. # 判断mid所属分组
  130. group_class_key = abtest_param.get('group_class_key')
  131. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  132. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  133. if mid_group is None:
  134. mid_group = 'mean_group'
  135. # 判断用户是否在免广告用户组列表中
  136. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  137. if mid_group in no_ad_mid_group_list:
  138. # 在免广告用户组列表中,则不出广告
  139. ad_predict = 1
  140. result = {
  141. 'mid_group': mid_group,
  142. 'ad_predict': ad_predict
  143. }
  144. else:
  145. # 获取用户组出广告后分享的概率
  146. share_user_data_key = abtest_param['share']['user'].get('data')
  147. share_user_rule_key = abtest_param['share']['user'].get('rule')
  148. group_share_rate_key = \
  149. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  150. if not redis_helper.key_exists(group_share_rate_key):
  151. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  152. group_share_rate_key = \
  153. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  154. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  155. # 获取视频出广告后分享的概率
  156. share_video_data_key = abtest_param['share']['video'].get('data')
  157. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{now_dt}"
  158. if not redis_helper.key_exists(video_share_rate_key):
  159. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  160. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{redis_dt}"
  161. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  162. if video_share_rate is None:
  163. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  164. # 获取用户组出广告后不直接跳出的概率
  165. out_user_data_key = abtest_param['out']['user'].get('data')
  166. out_user_rule_key = abtest_param['out']['user'].get('rule')
  167. group_out_rate_key = \
  168. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{now_dt}"
  169. if not redis_helper.key_exists(group_out_rate_key):
  170. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  171. group_out_rate_key = \
  172. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{redis_dt}"
  173. group_out_rate = redis_helper.get_score_with_value(key_name=group_out_rate_key, value=mid_group)
  174. # 获取视频出广告后不直接跳出的概率
  175. out_video_data_key = abtest_param['out']['video'].get('data')
  176. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{now_dt}"
  177. if not redis_helper.key_exists(video_out_rate_key):
  178. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  179. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{redis_dt}"
  180. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=int(video_id))
  181. if video_out_rate is None:
  182. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=-1)
  183. # 计算 mid-video 预测值
  184. if group_share_rate is None or video_share_rate is None or group_out_rate is None or video_out_rate is None:
  185. return None
  186. # 加权融合
  187. share_weight = abtest_param['mix_param']['share_weight']
  188. out_weight = abtest_param['mix_param']['out_weight']
  189. group_rate = share_weight * float(group_share_rate) + out_weight * float(group_out_rate)
  190. video_rate = share_weight * float(video_share_rate) + out_weight * float(video_out_rate)
  191. mid_video_predict_res = group_rate * video_rate
  192. # 获取对应的阈值
  193. threshold = get_threshold(
  194. abtest_id=abtest_id,
  195. abtest_config_tag=abtest_config_tag,
  196. ab_test_code=ab_test_code,
  197. mid_group=mid_group,
  198. care_model_status=care_model_status,
  199. abtest_param=abtest_param
  200. )
  201. # 阈值判断
  202. if mid_video_predict_res > threshold:
  203. # 大于阈值,出广告
  204. ad_predict = 2
  205. else:
  206. # 否则,不出广告
  207. ad_predict = 1
  208. result = {
  209. 'mid_group': mid_group,
  210. 'group_share_rate': group_share_rate,
  211. 'video_share_rate': video_share_rate,
  212. 'group_out_rate': group_out_rate,
  213. 'video_out_rate': video_out_rate,
  214. 'group_rate': group_rate,
  215. 'video_rate': video_rate,
  216. 'mid_video_predict_res': mid_video_predict_res,
  217. 'threshold': threshold,
  218. 'ad_predict': ad_predict}
  219. return result
  220. def predict_mid_video_res_with_multiply(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status):
  221. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  222. # 判断mid所属分组
  223. group_class_key = abtest_param.get('group_class_key')
  224. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  225. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  226. if mid_group is None:
  227. mid_group = 'mean_group'
  228. # 判断用户是否在免广告用户组列表中
  229. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  230. if mid_group in no_ad_mid_group_list:
  231. # 在免广告用户组列表中,则不出广告
  232. ad_predict = 1
  233. result = {
  234. 'mid_group': mid_group,
  235. 'ad_predict': ad_predict
  236. }
  237. else:
  238. # 获取用户组出广告后分享的概率
  239. share_user_data_key = abtest_param['share']['user'].get('data')
  240. share_user_rule_key = abtest_param['share']['user'].get('rule')
  241. group_share_rate_key = \
  242. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  243. if not redis_helper.key_exists(group_share_rate_key):
  244. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  245. group_share_rate_key = \
  246. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  247. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  248. # 获取视频出广告后分享的概率
  249. share_video_data_key = abtest_param['share']['video'].get('data')
  250. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{now_dt}"
  251. if not redis_helper.key_exists(video_share_rate_key):
  252. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  253. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{redis_dt}"
  254. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  255. if video_share_rate is None:
  256. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  257. # 获取用户组出广告后不直接跳出的概率
  258. out_user_data_key = abtest_param['out']['user'].get('data')
  259. out_user_rule_key = abtest_param['out']['user'].get('rule')
  260. group_out_rate_key = \
  261. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{now_dt}"
  262. if not redis_helper.key_exists(group_out_rate_key):
  263. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  264. group_out_rate_key = \
  265. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{redis_dt}"
  266. group_out_rate = redis_helper.get_score_with_value(key_name=group_out_rate_key, value=mid_group)
  267. # 获取视频出广告后不直接跳出的概率
  268. out_video_data_key = abtest_param['out']['video'].get('data')
  269. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{now_dt}"
  270. if not redis_helper.key_exists(video_out_rate_key):
  271. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  272. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{redis_dt}"
  273. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=int(video_id))
  274. if video_out_rate is None:
  275. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=-1)
  276. # 计算 mid-video 预测值
  277. if group_share_rate is None or video_share_rate is None or group_out_rate is None or video_out_rate is None:
  278. return None
  279. # 乘积融合
  280. group_rate = float(group_share_rate) * float(group_out_rate)
  281. video_rate = float(video_share_rate) * float(video_out_rate)
  282. mid_video_predict_res = group_rate * video_rate
  283. # 获取对应的阈值
  284. threshold = get_threshold(
  285. abtest_id=abtest_id,
  286. abtest_config_tag=abtest_config_tag,
  287. ab_test_code=ab_test_code,
  288. mid_group=mid_group,
  289. care_model_status=care_model_status,
  290. abtest_param=abtest_param
  291. )
  292. # 阈值判断
  293. if mid_video_predict_res > threshold:
  294. # 大于阈值,出广告
  295. ad_predict = 2
  296. else:
  297. # 否则,不出广告
  298. ad_predict = 1
  299. result = {
  300. 'mid_group': mid_group,
  301. 'group_share_rate': group_share_rate,
  302. 'video_share_rate': video_share_rate,
  303. 'group_out_rate': group_out_rate,
  304. 'video_out_rate': video_out_rate,
  305. 'group_rate': group_rate,
  306. 'video_rate': video_rate,
  307. 'mid_video_predict_res': mid_video_predict_res,
  308. 'threshold': threshold,
  309. 'ad_predict': ad_predict}
  310. return result
  311. def ad_recommend_predict(app_type, mid, video_id, ab_exp_info, ab_test_code, care_model_status):
  312. """
  313. 广告推荐预测
  314. :param app_type: app_type
  315. :param mid: mid
  316. :param video_id: video_id
  317. :param ab_exp_info: AB实验组参数
  318. :param ab_test_code: 用户对应的ab组
  319. :param care_model_status: 用户关怀模式状态 1-未开启,2-开启
  320. :return: ad_predict, type-int, 1-不发放广告,2-发放广告
  321. """
  322. try:
  323. now_date = datetime.datetime.today()
  324. # now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  325. # 获取实验参数
  326. abtest_id, abtest_config_tag = get_params(ab_exp_info=ab_exp_info, ab_test_code=ab_test_code)
  327. if abtest_id is None or abtest_config_tag is None:
  328. return None
  329. abtest_param = config_.AD_ABTEST_CONFIG.get(f'{abtest_id}-{abtest_config_tag}')
  330. if abtest_param is None:
  331. return None
  332. threshold_mix_func = abtest_param.get('threshold_mix_func', None)
  333. if threshold_mix_func == 'add':
  334. result = predict_mid_video_res_with_add(
  335. now_date=now_date,
  336. mid=mid,
  337. video_id=video_id,
  338. abtest_param=abtest_param,
  339. abtest_id=abtest_id,
  340. abtest_config_tag=abtest_config_tag,
  341. ab_test_code=ab_test_code,
  342. care_model_status=care_model_status
  343. )
  344. elif threshold_mix_func == 'multiply':
  345. result = predict_mid_video_res_with_multiply(
  346. now_date=now_date,
  347. mid=mid,
  348. video_id=video_id,
  349. abtest_param=abtest_param,
  350. abtest_id=abtest_id,
  351. abtest_config_tag=abtest_config_tag,
  352. ab_test_code=ab_test_code,
  353. care_model_status=care_model_status
  354. )
  355. else:
  356. result = predict_mid_video_res(
  357. now_date=now_date,
  358. mid=mid,
  359. video_id=video_id,
  360. abtest_param=abtest_param,
  361. abtest_id=abtest_id,
  362. abtest_config_tag=abtest_config_tag,
  363. ab_test_code=ab_test_code,
  364. care_model_status=care_model_status
  365. )
  366. # user_data_key = abtest_param['user'].get('data')
  367. # user_rule_key = abtest_param['user'].get('rule')
  368. # video_data_key = abtest_param['video'].get('data')
  369. # group_class_key = abtest_param.get('group_class_key')
  370. # no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  371. #
  372. # # 判断mid所属分组
  373. # mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  374. # mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  375. # if mid_group is None:
  376. # mid_group = 'mean_group'
  377. #
  378. # # 判断用户是否在免广告用户组列表中
  379. # if mid_group in no_ad_mid_group_list:
  380. # # 在免广告用户组列表中,则不出广告
  381. # ad_predict = 1
  382. # result = {
  383. # 'mid_group': mid_group,
  384. # 'ad_predict': ad_predict
  385. # }
  386. # else:
  387. # # 获取用户组分享率
  388. # group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
  389. # if not redis_helper.key_exists(group_share_rate_key):
  390. # redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  391. # group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
  392. # group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  393. # # 获取视频分享率
  394. # video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
  395. # if not redis_helper.key_exists(video_share_rate_key):
  396. # redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  397. # video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
  398. # video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  399. # if video_share_rate is None:
  400. # video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  401. #
  402. # # 计算 mid-video 分享率
  403. # if group_share_rate is None or video_share_rate is None:
  404. # return None
  405. # mid_video_share_rate = float(group_share_rate) * float(video_share_rate)
  406. #
  407. # # 获取对应的阈值
  408. # threshold = get_threshold(
  409. # abtest_id=abtest_id,
  410. # abtest_config_tag=abtest_config_tag,
  411. # ab_test_code=ab_test_code,
  412. # mid_group=mid_group,
  413. # care_model_status=care_model_status,
  414. # abtest_param=abtest_param
  415. # )
  416. # # 阈值判断
  417. # if mid_video_share_rate > threshold:
  418. # # 大于阈值,出广告
  419. # ad_predict = 2
  420. # else:
  421. # # 否则,不出广告
  422. # ad_predict = 1
  423. # result = {
  424. # 'mid_group': mid_group,
  425. # 'group_share_rate': group_share_rate,
  426. # 'video_share_rate': video_share_rate,
  427. # 'mid_video_share_rate': mid_video_share_rate,
  428. # 'threshold': threshold,
  429. # 'ad_predict': ad_predict}
  430. return result
  431. except Exception as e:
  432. log_.error(traceback.format_exc())
  433. return None