ad_recommend.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. import traceback
  2. import datetime
  3. from utils import RedisHelper
  4. from config import set_config
  5. from log import Log
  6. log_ = Log()
  7. config_ = set_config()
  8. redis_helper = RedisHelper()
  9. def get_params(ab_exp_info, ab_test_code):
  10. """
  11. 根据实验分组给定对应的参数
  12. :param ab_exp_info: AB实验组参数
  13. :param ab_test_code: 用户对应的ab组
  14. :return:
  15. """
  16. abtest_id, abtest_config_tag = None, None
  17. ad_abtest_id_list = [key.split('-')[0] for key in config_.AD_ABTEST_CONFIG]
  18. # 获取广告实验配置
  19. config_value_dict = {}
  20. if ab_exp_info:
  21. ab_exp_list = ab_exp_info.get('ab_test002', None)
  22. if ab_exp_list:
  23. for ab_item in ab_exp_list:
  24. ab_exp_code = ab_item.get('abExpCode', None)
  25. if not ab_exp_code:
  26. continue
  27. if ab_exp_code in ad_abtest_id_list:
  28. config_value = ab_item.get('configValue', None)
  29. if config_value:
  30. config_value_dict[str(ab_exp_code)] = eval(str(config_value))
  31. if len(config_value_dict) > 0:
  32. for ab_exp_code, config_value in config_value_dict.items():
  33. for tag, value in config_value.items():
  34. if ab_test_code in value:
  35. abtest_id = ab_exp_code
  36. abtest_config_tag = tag
  37. break
  38. return abtest_id, abtest_config_tag
  39. def get_threshold(abtest_id, abtest_config_tag, ab_test_code, mid_group, care_model_status, abtest_param):
  40. """获取对应的阈值"""
  41. # 判断是否是关怀模式实验
  42. care_model_status_param = abtest_param.get('care_model_status_param', None)
  43. care_model_ab_mid_group = abtest_param.get('care_model_ab_mid_group', None)
  44. if care_model_status_param is None:
  45. # 无关怀模式实验
  46. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  47. else:
  48. # 关怀模式实验
  49. if care_model_status is None or care_model_ab_mid_group is None or care_model_status == 'null':
  50. # 参数缺失,走默认
  51. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  52. elif int(care_model_status) == int(care_model_status_param) and mid_group == care_model_ab_mid_group:
  53. # 实验匹配,获取对应的阈值
  54. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL
  55. else:
  56. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  57. threshold_key_name = f"{threshold_key_name_prefix}{abtest_id}:{abtest_config_tag}:{ab_test_code}:{mid_group}"
  58. threshold = redis_helper.get_data_from_redis(key_name=threshold_key_name)
  59. if threshold is None:
  60. threshold = 0
  61. else:
  62. threshold = float(threshold)
  63. return threshold
  64. def ad_recommend_predict(app_type, mid, video_id, ab_exp_info, ab_test_code, care_model_status):
  65. """
  66. 广告推荐预测
  67. :param app_type: app_type
  68. :param mid: mid
  69. :param video_id: video_id
  70. :param ab_exp_info: AB实验组参数
  71. :param ab_test_code: 用户对应的ab组
  72. :param care_model_status: 用户关怀模式状态 1-未开启,2-开启
  73. :return: ad_predict, type-int, 1-不发放广告,2-发放广告
  74. """
  75. try:
  76. now_date = datetime.datetime.today()
  77. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  78. # 获取实验参数
  79. abtest_id, abtest_config_tag = get_params(ab_exp_info=ab_exp_info, ab_test_code=ab_test_code)
  80. if abtest_id is None or abtest_config_tag is None:
  81. return None
  82. abtest_param = config_.AD_ABTEST_CONFIG.get(f'{abtest_id}-{abtest_config_tag}')
  83. if abtest_param is None:
  84. return None
  85. user_data_key = abtest_param['user'].get('data')
  86. user_rule_key = abtest_param['user'].get('rule')
  87. video_data_key = abtest_param['video'].get('data')
  88. group_class_key = abtest_param.get('group_class_key')
  89. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  90. # 判断mid所属分组
  91. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  92. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  93. if mid_group is None:
  94. mid_group = 'mean_group'
  95. # 判断用户是否在免广告用户组列表中
  96. if mid_group in no_ad_mid_group_list:
  97. # 在免广告用户组列表中,则不出广告
  98. ad_predict = 1
  99. result = {
  100. 'mid_group': mid_group,
  101. 'ad_predict': ad_predict
  102. }
  103. else:
  104. # 获取用户组分享率
  105. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
  106. if not redis_helper.key_exists(group_share_rate_key):
  107. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  108. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
  109. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  110. # 获取视频分享率
  111. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
  112. if not redis_helper.key_exists(video_share_rate_key):
  113. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  114. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
  115. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  116. if video_share_rate is None:
  117. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  118. # 计算 mid-video 分享率
  119. if group_share_rate is None or video_share_rate is None:
  120. return None
  121. mid_video_share_rate = float(group_share_rate) * float(video_share_rate)
  122. # 获取对应的阈值
  123. threshold = get_threshold(
  124. abtest_id=abtest_id,
  125. abtest_config_tag=abtest_config_tag,
  126. ab_test_code=ab_test_code,
  127. mid_group=mid_group,
  128. care_model_status=care_model_status,
  129. abtest_param=abtest_param
  130. )
  131. # 阈值判断
  132. if mid_video_share_rate > threshold:
  133. # 大于阈值,出广告
  134. ad_predict = 2
  135. else:
  136. # 否则,不出广告
  137. ad_predict = 1
  138. result = {
  139. 'mid_group': mid_group,
  140. 'group_share_rate': group_share_rate,
  141. 'video_share_rate': video_share_rate,
  142. 'mid_video_share_rate': mid_video_share_rate,
  143. 'threshold': threshold,
  144. 'ad_predict': ad_predict}
  145. return result
  146. except Exception as e:
  147. log_.error(traceback.format_exc())
  148. return None