video_rank.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 小时级更新数据
  23. h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  24. h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  25. # 地域分组小时级规则更新数据
  26. region_h_recall = [item for item in data['rov_pool_recall']
  27. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  28. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  29. # 地域分组小时级更新24h规则更新数据
  30. region_24h_recall = [item for item in data['rov_pool_recall']
  31. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  32. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  33. # 地域分组天级规则更新数据
  34. region_day_recall = [item for item in data['rov_pool_recall']
  35. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  36. region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 相对24h规则更新数据
  38. rule_24h_recall = [item for item in data['rov_pool_recall']
  39. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  40. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  41. # 天级规则更新数据
  42. day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  43. day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  44. # ROV召回池
  45. rov_initial_recall = [
  46. item for item in data['rov_pool_recall']
  47. if item.get('pushFrom') not in
  48. [config_.PUSH_FROM['rov_recall_h'],
  49. config_.PUSH_FROM['rov_recall_region_h'],
  50. config_.PUSH_FROM['rov_recall_region_24h'],
  51. config_.PUSH_FROM['rov_recall_region_day'],
  52. config_.PUSH_FROM['rov_recall_24h'],
  53. config_.PUSH_FROM['rov_recall_day']]
  54. ]
  55. rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  56. rov_recall_rank = h_recall_rank + \
  57. region_h_recall_rank + region_24h_recall_rank + region_day_recall_rank + \
  58. rule_24h_recall_rank + day_recall_rank + rov_initial_recall_rank
  59. # 流量池
  60. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  61. # 对各路召回的视频进行去重
  62. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  63. top_K=top_K)
  64. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  65. # rov_recall_rank, flow_recall_rank))
  66. # 从ROV召回池中获取top k
  67. if len(rov_recall_rank) > 0:
  68. rank_result = rov_recall_rank[:top_K]
  69. rov_recall_rank = rov_recall_rank[top_K:]
  70. else:
  71. rank_result = flow_recall_rank[:top_K]
  72. flow_recall_rank = flow_recall_rank[top_K:]
  73. # 按概率 p 及score排序获取 size - k 个视频
  74. i = 0
  75. while i < size - top_K:
  76. # 随机生成[0, 1)浮点数
  77. rand = random.random()
  78. # log_.info('rand: {}'.format(rand))
  79. if rand < flow_pool_P:
  80. if flow_recall_rank:
  81. rank_result.append(flow_recall_rank[0])
  82. flow_recall_rank.remove(flow_recall_rank[0])
  83. else:
  84. rank_result.extend(rov_recall_rank[:size - top_K - i])
  85. return rank_result
  86. else:
  87. if rov_recall_rank:
  88. rank_result.append(rov_recall_rank[0])
  89. rov_recall_rank.remove(rov_recall_rank[0])
  90. else:
  91. rank_result.extend(flow_recall_rank[:size - top_K - i])
  92. return rank_result
  93. i += 1
  94. return rank_result
  95. def remove_duplicate(rov_recall, flow_recall, top_K):
  96. """
  97. 对多路召回的视频去重
  98. 去重原则:
  99. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  100. :param rov_recall: ROV召回池-已排序
  101. :param flow_recall: 流量池-已排序
  102. :param top_K: 保证topK为召回池视频 type-int
  103. :return:
  104. """
  105. flow_recall_result = []
  106. rov_recall_remove = []
  107. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  108. # rov_recall topK
  109. for item in rov_recall[:top_K]:
  110. if item['videoId'] in flow_recall_video_ids:
  111. flow_recall_video_ids.remove(item['videoId'])
  112. # other
  113. for item in rov_recall[top_K:]:
  114. if item['videoId'] in flow_recall_video_ids:
  115. rov_recall_remove.append(item)
  116. # rov recall remove
  117. for item in rov_recall_remove:
  118. rov_recall.remove(item)
  119. # flow recall remove
  120. for item in flow_recall:
  121. if item['videoId'] in flow_recall_video_ids:
  122. flow_recall_result.append(item)
  123. return rov_recall, flow_recall_result
  124. def bottom_strategy(size, app_type, ab_code):
  125. """
  126. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  127. :param size: 需要获取的视频数
  128. :param app_type: 产品标识 type-int
  129. :param ab_code: abCode
  130. :return:
  131. """
  132. pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
  133. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  134. redis_helper = RedisHelper()
  135. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  136. if not data:
  137. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  138. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  139. # 二次兜底
  140. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
  141. return bottom_data
  142. # 视频状态过滤采用离线定时过滤方案
  143. # 状态过滤
  144. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  145. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  146. if len(data) > size:
  147. random_data = numpy.random.choice(data, size, False)
  148. else:
  149. random_data = data
  150. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  151. for item in random_data]
  152. return bottom_data
  153. def bottom_strategy_last(size, app_type, ab_code):
  154. """
  155. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  156. :param size: 需要获取的视频数
  157. :param app_type: 产品标识 type-int
  158. :param ab_code: abCode
  159. :return:
  160. """
  161. redis_helper = RedisHelper()
  162. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  163. random_data = numpy.random.choice(bottom_data, size * 30, False)
  164. # 视频状态过滤采用离线定时过滤方案
  165. # 状态过滤
  166. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  167. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  168. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  169. for video_id in random_data[:size]]
  170. return bottom_data
  171. def video_rank_by_w_h_rate(videos):
  172. """
  173. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  174. :param videos:
  175. :return:
  176. """
  177. redis_helper = RedisHelper()
  178. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  179. top_2_push_from_flag = [False, False]
  180. for i, video in enumerate(videos[:2]):
  181. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  182. top_2_push_from_flag[i] = True
  183. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  184. return videos
  185. # ##### 判断前两个视频是否为横屏
  186. top_2_w_h_rate_flag = [False, False]
  187. for i, video in enumerate(videos[:2]):
  188. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  189. # 视频来源为置顶 或 流量池时,不做判断
  190. top_2_w_h_rate_flag[i] = True
  191. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  192. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  193. w_h_rate = redis_helper.get_score_with_value(
  194. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  195. if w_h_rate is not None:
  196. top_2_w_h_rate_flag[i] = True
  197. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  198. # 视频来源为 二层兜底时,判断是否是横屏
  199. w_h_rate = redis_helper.get_score_with_value(
  200. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  201. if w_h_rate is not None:
  202. top_2_w_h_rate_flag[i] = True
  203. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  204. return videos
  205. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  206. # 记录横屏视频位置
  207. horizontal_video_index = []
  208. # 记录流量池视频位置
  209. flow_video_index = []
  210. # 记录置顶视频位置
  211. top_video_index = []
  212. for i, video in enumerate(videos):
  213. # 视频来源为置顶
  214. if video['pushFrom'] == config_.PUSH_FROM['top']:
  215. top_video_index.append(i)
  216. # 视频来源为流量池
  217. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  218. flow_video_index.append(i)
  219. # 视频来源为rov召回池 或 一层兜底
  220. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  221. w_h_rate = redis_helper.get_score_with_value(
  222. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  223. if w_h_rate is not None:
  224. horizontal_video_index.append(i)
  225. else:
  226. continue
  227. # 视频来源为 二层兜底
  228. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  229. w_h_rate = redis_helper.get_score_with_value(
  230. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  231. if w_h_rate is not None:
  232. horizontal_video_index.append(i)
  233. else:
  234. continue
  235. # 重新排序
  236. top2_index = []
  237. for i in range(2):
  238. if i in top_video_index:
  239. top2_index.append(i)
  240. elif i in flow_video_index:
  241. top2_index.append(i)
  242. flow_video_index.remove(i)
  243. elif i in horizontal_video_index:
  244. top2_index.append(i)
  245. horizontal_video_index.remove(i)
  246. elif len(horizontal_video_index) > 0:
  247. # 调整横屏视频到第一位
  248. top2_index.append(horizontal_video_index[0])
  249. # 从横屏位置记录中移除
  250. horizontal_video_index.pop(0)
  251. elif i == 0:
  252. return videos
  253. # 重排
  254. flow_result = [videos[i] for i in flow_video_index]
  255. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  256. top2_result = []
  257. for i, j in enumerate(top2_index):
  258. item = videos[j]
  259. if i != j:
  260. # 修改abCode
  261. item['abCode'] = config_.AB_CODE['w_h_rate']
  262. top2_result.append(item)
  263. new_rank_result = top2_result
  264. for i in range(len(top2_index), len(videos)):
  265. if i in flow_video_index:
  266. new_rank_result.append(flow_result[0])
  267. flow_result.pop(0)
  268. else:
  269. new_rank_result.append(other_result[0])
  270. other_result.pop(0)
  271. return new_rank_result
  272. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  273. """
  274. 视频分发排序 - 包含老视频, 老视频插入固定位置
  275. :param rank_result: 排序后的结果
  276. :param size: 请求数
  277. :param old_video_index: 老视频插入的位置索引,默认为2
  278. :return: new_rank_result
  279. """
  280. if not old_video_recall:
  281. return rank_result
  282. if not rank_result:
  283. return old_video_recall[:size]
  284. # 视频去重
  285. rank_video_ids = [item['videoId'] for item in rank_result]
  286. old_video_remove = []
  287. for old_video in old_video_recall:
  288. if old_video['videoId'] in rank_video_ids:
  289. old_video_remove.append(old_video)
  290. for item in old_video_remove:
  291. old_video_recall.remove(item)
  292. if not old_video_recall:
  293. return rank_result
  294. # 插入老视频
  295. # 随机获取一个视频
  296. ind = random.randint(0, len(old_video_recall) - 1)
  297. old_video = old_video_recall[ind]
  298. # 插入
  299. if len(rank_result) < top_K:
  300. new_rank_result = rank_result + [old_video]
  301. else:
  302. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  303. if len(new_rank_result) > size:
  304. # 判断后两位视频来源
  305. push_from_1 = new_rank_result[-1]['pushFrom']
  306. push_from_2 = new_rank_result[-2]['pushFrom']
  307. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  308. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  309. return new_rank_result[:size]
  310. if __name__ == '__main__':
  311. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  312. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  313. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  314. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  315. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  316. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  317. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  318. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  319. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  320. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  321. res = video_rank_by_w_h_rate(videos=d_test)
  322. for tmp in res:
  323. print(tmp)