recommend.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. import time
  2. import multiprocessing
  3. import traceback
  4. from datetime import datetime
  5. import config
  6. from log import Log
  7. from config import set_config
  8. from video_recall import PoolRecall
  9. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate
  10. from db_helper import RedisHelper
  11. import gevent
  12. from utils import FilterVideos
  13. import ast
  14. log_ = Log()
  15. config_ = set_config()
  16. def video_position_recommend(mid, uid, size, app_type, algo_type, client_info, videos):
  17. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  18. # algo_type=algo_type, client_info=client_info)
  19. redis_helper = RedisHelper()
  20. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  21. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  22. if pos1_vids is not None:
  23. pos1_vids = ast.literal_eval(pos1_vids)
  24. if pos2_vids is not None:
  25. pos2_vids = ast.literal_eval(pos2_vids)
  26. pos1_vids = [int(i) for i in pos1_vids]
  27. pos2_vids = [int(i) for i in pos2_vids]
  28. filter_1 = FilterVideos(app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  29. filter_2 = FilterVideos(app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  30. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  31. gevent.joinall(t)
  32. filted_list = [i.get() for i in t]
  33. pos1_vids = filted_list[0]
  34. pos2_vids = filted_list[1]
  35. if pos1_vids is not None and len(pos1_vids) >0 :
  36. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  37. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  38. if pos2_vids is not None and len(pos2_vids) >0 :
  39. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  40. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  41. return videos[:10]
  42. def video_recommend(mid, uid, size, app_type, algo_type, client_info):
  43. """
  44. 首页线上推荐逻辑
  45. :param mid: mid type-string
  46. :param uid: uid type-string
  47. :param size: 请求视频数量 type-int
  48. :param app_type: 产品标识 type-int
  49. :param algo_type: 算法类型 type-string
  50. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  51. :return:
  52. """
  53. ab_code = config_.AB_CODE['initial']
  54. # ####### 多进程召回
  55. start_recall = time.time()
  56. # log_.info('====== recall')
  57. '''
  58. cores = multiprocessing.cpu_count()
  59. pool = multiprocessing.Pool(processes=cores)
  60. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  61. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  62. pool_list = [
  63. # rov召回池
  64. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  65. # 流量池
  66. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  67. ]
  68. recall_result_list = [p.get() for p in pool_list]
  69. pool.close()
  70. pool.join()
  71. '''
  72. recall_result_list = []
  73. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info)
  74. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  75. t = [gevent.spawn(pool_recall.rov_pool_recall, size), gevent.spawn(pool_recall.flow_pool_recall, size)]
  76. gevent.joinall(t)
  77. recall_result_list = [i.get() for i in t]
  78. end_recall = time.time()
  79. log_.info('mid: {}, uid: {}, recall: {}, execute time = {}ms'.format(
  80. mid, uid, recall_result_list, (end_recall - start_recall) * 1000))
  81. # ####### 排序
  82. start_rank = time.time()
  83. # log_.info('====== rank')
  84. data = {
  85. 'rov_pool_recall': recall_result_list[0],
  86. 'flow_pool_recall': recall_result_list[1]
  87. }
  88. rank_result = video_rank(data=data, size=size)
  89. end_rank = time.time()
  90. log_.info('mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  91. mid, uid, rank_result, (end_rank - start_rank) * 1000))
  92. if not rank_result:
  93. # 兜底策略
  94. # log_.info('====== bottom strategy')
  95. start_bottom = time.time()
  96. rank_result = bottom_strategy(size=size, app_type=app_type, ab_code=ab_code)
  97. end_bottom = time.time()
  98. log_.info('mid: {}, uid: {}, bottom strategy result: {}, execute time = {}ms'.format(
  99. mid, uid, rank_result, (end_bottom - start_bottom) * 1000))
  100. # ####### 视频宽高比AB实验
  101. # 对内容精选进行 视频宽高比分发实验
  102. if app_type == config_.APP_TYPE['LONG_VIDEO']:
  103. videos = rank_result
  104. rank_result = video_rank_by_w_h_rate(videos=videos)
  105. log_.info('app_type: {}, mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  106. app_type, mid, uid, rank_result, (end_rank - start_rank) * 1000))
  107. #按position位置排序
  108. if app_type == config_.APP_TYPE['SHORT_VIDEO']:
  109. rank_result = video_position_recommend(mid, uid, size, app_type, algo_type, client_info, rank_result)
  110. print('===========================')
  111. print(rank_result)
  112. log_.info('app_type: {}, mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  113. app_type, mid, uid, rank_result, (end_rank - start_rank) * 1000))
  114. # ####### redis数据刷新
  115. # log_.info('====== update redis')
  116. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  117. redis_helper = RedisHelper()
  118. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  119. preview_video_ids = [int(item['videoId']) for item in rank_result]
  120. if preview_video_ids:
  121. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  122. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  123. log_.info('preview redis update success!')
  124. # 将此次获取的ROV召回池config_.K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  125. rov_recall_video = [item['videoId'] for item in rank_result[:config_.K]
  126. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  127. if len(rov_recall_video) > 0:
  128. if not redis_helper.get_score_with_value(key_name=config_.UPDATE_ROV_KEY_NAME, value=rov_recall_video[-1]):
  129. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1])
  130. # if 0 < len(rov_recall_video) <= config_.K:
  131. # if not redis_helper.get_score_with_value(key_name=config_.UPDATE_ROV_KEY_NAME, value=rov_recall_video[-1]):
  132. # redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1])
  133. # elif len(rov_recall_video) > config_.K:
  134. # if not redis_helper.get_score_with_value(key_name=config_.UPDATE_ROV_KEY_NAME, value=rov_recall_video[config_.K - 1]):
  135. # redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[config_.K - 1])
  136. log_.info('last video redis update success!')
  137. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  138. flow_recall_video = [item for item in rank_result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  139. if flow_recall_video:
  140. update_local_distribute_count(flow_recall_video)
  141. log_.info('update local distribute count success!')
  142. return rank_result
  143. def update_local_distribute_count(videos):
  144. """
  145. 更新本地分发数
  146. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  147. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  148. :return:
  149. """
  150. try:
  151. redis_helper = RedisHelper()
  152. for item in videos:
  153. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  154. # 本地记录的分发数 - 1
  155. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  156. # if redis_helper.key_exists(key_name=key_name):
  157. # # 该视频本地有记录,本地记录的分发数 - 1
  158. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  159. # else:
  160. # # 该视频本地无记录,接口获取的分发数 - 1
  161. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  162. except Exception as e:
  163. log_.error('update_local_distribute_count error...')
  164. log_.error(traceback.format_exc())
  165. def video_relevant_recommend(mid, uid, size, app_type):
  166. """
  167. 相关推荐逻辑
  168. :param mid: mid type-string
  169. :param uid: uid type-string
  170. :param size: 请求视频数量 type-int
  171. :param app_type: 产品标识 type-int
  172. :return: videos type-list
  173. """
  174. videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type, algo_type='', client_info=None)
  175. return videos
  176. if __name__ == '__main__':
  177. videos = [{'videoId': '12345', 'flowPool': '133#442#2', 'distributeCount': 10}]
  178. update_local_distribute_count(videos)