video_rank.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # ROV召回池
  23. rov_recall_rank = sorted(data['rov_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  24. # 流量池
  25. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  26. # 对各路召回的视频进行去重
  27. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  28. top_K=top_K)
  29. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  30. # rov_recall_rank, flow_recall_rank))
  31. # 从ROV召回池中获取top k
  32. if len(rov_recall_rank) > 0:
  33. rank_result = rov_recall_rank[:top_K]
  34. rov_recall_rank = rov_recall_rank[top_K:]
  35. else:
  36. rank_result = flow_recall_rank[:top_K]
  37. flow_recall_rank = flow_recall_rank[top_K:]
  38. # 按概率 p 及score排序获取 size - k 个视频
  39. i = 0
  40. while i < size - top_K:
  41. # 随机生成[0, 1)浮点数
  42. rand = random.random()
  43. # log_.info('rand: {}'.format(rand))
  44. if rand < flow_pool_P:
  45. if flow_recall_rank:
  46. rank_result.append(flow_recall_rank[0])
  47. flow_recall_rank.remove(flow_recall_rank[0])
  48. else:
  49. rank_result.extend(rov_recall_rank[:size - top_K - i])
  50. return rank_result
  51. else:
  52. if rov_recall_rank:
  53. rank_result.append(rov_recall_rank[0])
  54. rov_recall_rank.remove(rov_recall_rank[0])
  55. else:
  56. rank_result.extend(flow_recall_rank[:size - top_K - i])
  57. return rank_result
  58. i += 1
  59. return rank_result
  60. def remove_duplicate(rov_recall, flow_recall, top_K):
  61. """
  62. 对多路召回的视频去重
  63. 去重原则:
  64. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  65. :param rov_recall: ROV召回池-已排序
  66. :param flow_recall: 流量池-已排序
  67. :param top_K: 保证topK为召回池视频 type-int
  68. :return:
  69. """
  70. flow_recall_result = []
  71. rov_recall_remove = []
  72. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  73. # rov_recall topK
  74. for item in rov_recall[:top_K]:
  75. if item['videoId'] in flow_recall_video_ids:
  76. flow_recall_video_ids.remove(item['videoId'])
  77. # other
  78. for item in rov_recall[top_K:]:
  79. if item['videoId'] in flow_recall_video_ids:
  80. rov_recall_remove.append(item)
  81. # rov recall remove
  82. for item in rov_recall_remove:
  83. rov_recall.remove(item)
  84. # flow recall remove
  85. for item in flow_recall:
  86. if item['videoId'] in flow_recall_video_ids:
  87. flow_recall_result.append(item)
  88. return rov_recall, flow_recall_result
  89. def bottom_strategy(size, app_type, ab_code):
  90. """
  91. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  92. :param size: 需要获取的视频数
  93. :param app_type: 产品标识 type-int
  94. :param ab_code: abCode
  95. :return:
  96. """
  97. pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
  98. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  99. redis_helper = RedisHelper()
  100. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  101. if not data:
  102. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  103. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  104. # 二次兜底
  105. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
  106. return bottom_data
  107. # 视频状态过滤采用离线定时过滤方案
  108. # 状态过滤
  109. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  110. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  111. if len(data) > size:
  112. random_data = numpy.random.choice(data, size, False)
  113. else:
  114. random_data = data
  115. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  116. for item in random_data]
  117. return bottom_data
  118. def bottom_strategy_last(size, app_type, ab_code):
  119. """
  120. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  121. :param size: 需要获取的视频数
  122. :param app_type: 产品标识 type-int
  123. :param ab_code: abCode
  124. :return:
  125. """
  126. redis_helper = RedisHelper()
  127. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  128. random_data = numpy.random.choice(bottom_data, size * 30, False)
  129. # 视频状态过滤采用离线定时过滤方案
  130. # 状态过滤
  131. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  132. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  133. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  134. for video_id in random_data[:size]]
  135. return bottom_data
  136. def video_rank_by_w_h_rate(videos):
  137. """
  138. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  139. :param videos:
  140. :return:
  141. """
  142. redis_helper = RedisHelper()
  143. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  144. top_2_push_from_flag = [False, False]
  145. for i, video in enumerate(videos[:2]):
  146. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  147. top_2_push_from_flag[i] = True
  148. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  149. return videos
  150. # ##### 判断前两个视频是否为横屏
  151. top_2_w_h_rate_flag = [False, False]
  152. for i, video in enumerate(videos[:2]):
  153. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  154. # 视频来源为置顶 或 流量池时,不做判断
  155. top_2_w_h_rate_flag[i] = True
  156. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  157. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  158. w_h_rate = redis_helper.get_score_with_value(
  159. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  160. if w_h_rate is not None:
  161. top_2_w_h_rate_flag[i] = True
  162. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  163. # 视频来源为 二层兜底时,判断是否是横屏
  164. w_h_rate = redis_helper.get_score_with_value(
  165. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  166. if w_h_rate is not None:
  167. top_2_w_h_rate_flag[i] = True
  168. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  169. return videos
  170. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  171. # 记录横屏视频位置
  172. horizontal_video_index = []
  173. # 记录流量池视频位置
  174. flow_video_index = []
  175. # 记录置顶视频位置
  176. top_video_index = []
  177. for i, video in enumerate(videos):
  178. # 视频来源为置顶
  179. if video['pushFrom'] == config_.PUSH_FROM['top']:
  180. top_video_index.append(i)
  181. # 视频来源为流量池
  182. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  183. flow_video_index.append(i)
  184. # 视频来源为rov召回池 或 一层兜底
  185. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  186. w_h_rate = redis_helper.get_score_with_value(
  187. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  188. if w_h_rate is not None:
  189. horizontal_video_index.append(i)
  190. else:
  191. continue
  192. # 视频来源为 二层兜底
  193. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  194. w_h_rate = redis_helper.get_score_with_value(
  195. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  196. if w_h_rate is not None:
  197. horizontal_video_index.append(i)
  198. else:
  199. continue
  200. # 重新排序
  201. top2_index = []
  202. for i in range(2):
  203. if i in top_video_index:
  204. top2_index.append(i)
  205. elif i in flow_video_index:
  206. top2_index.append(i)
  207. flow_video_index.remove(i)
  208. elif i in horizontal_video_index:
  209. top2_index.append(i)
  210. horizontal_video_index.remove(i)
  211. elif len(horizontal_video_index) > 0:
  212. # 调整横屏视频到第一位
  213. top2_index.append(horizontal_video_index[0])
  214. # 从横屏位置记录中移除
  215. horizontal_video_index.pop(0)
  216. elif i == 0:
  217. return videos
  218. # 重排
  219. flow_result = [videos[i] for i in flow_video_index]
  220. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  221. top2_result = []
  222. for i, j in enumerate(top2_index):
  223. item = videos[j]
  224. if i != j:
  225. # 修改abCode
  226. item['abCode'] = config_.AB_CODE['w_h_rate']
  227. top2_result.append(item)
  228. new_rank_result = top2_result
  229. for i in range(len(top2_index), len(videos)):
  230. if i in flow_video_index:
  231. new_rank_result.append(flow_result[0])
  232. flow_result.pop(0)
  233. else:
  234. new_rank_result.append(other_result[0])
  235. other_result.pop(0)
  236. return new_rank_result
  237. if __name__ == '__main__':
  238. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  239. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  240. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  241. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  242. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  243. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  244. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  245. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  246. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  247. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  248. res = video_rank_by_w_h_rate(videos=d_test)
  249. for tmp in res:
  250. print(tmp)