ad_recommend.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. import json
  2. import traceback
  3. import datetime
  4. from utils import RedisHelper
  5. from config import set_config
  6. from log import Log
  7. log_ = Log()
  8. config_ = set_config()
  9. redis_helper = RedisHelper()
  10. def get_params(ab_exp_info, ab_test_code):
  11. """
  12. 根据实验分组给定对应的参数
  13. :param ab_exp_info: AB实验组参数
  14. :param ab_test_code: 用户对应的ab组
  15. :return:
  16. """
  17. abtest_id, abtest_config_tag = None, None
  18. ad_abtest_id_list = [key.split('-')[0] for key in config_.AD_ABTEST_CONFIG]
  19. # 获取广告实验配置
  20. config_value_dict = {}
  21. if ab_exp_info:
  22. ab_exp_list = ab_exp_info.get('ab_test002', None)
  23. if ab_exp_list:
  24. for ab_item in ab_exp_list:
  25. ab_exp_code = ab_item.get('abExpCode', None)
  26. if not ab_exp_code:
  27. continue
  28. if ab_exp_code in ad_abtest_id_list:
  29. config_value = ab_item.get('configValue', None)
  30. if config_value:
  31. config_value_dict[str(ab_exp_code)] = eval(str(config_value))
  32. if len(config_value_dict) > 0:
  33. for ab_exp_code, config_value in config_value_dict.items():
  34. for tag, value in config_value.items():
  35. if ab_test_code in value:
  36. abtest_id = ab_exp_code
  37. abtest_config_tag = tag
  38. break
  39. return abtest_id, abtest_config_tag
  40. def get_threshold(abtest_id, abtest_config_tag, ab_test_code, mid_group, care_model_status, abtest_param):
  41. """获取对应的阈值"""
  42. # 判断是否是关怀模式实验
  43. care_model_status_param = abtest_param.get('care_model_status_param', None)
  44. care_model_ab_mid_group = abtest_param.get('care_model_ab_mid_group', [])
  45. if care_model_status_param is None:
  46. # 无关怀模式实验
  47. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  48. else:
  49. # 关怀模式实验
  50. if care_model_status is None or len(care_model_ab_mid_group) == 0 or care_model_status == 'null':
  51. # 参数缺失,走默认
  52. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  53. elif int(care_model_status) == int(care_model_status_param) and mid_group in care_model_ab_mid_group:
  54. # 实验匹配,获取对应的阈值
  55. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD_CARE_MODEL
  56. else:
  57. threshold_key_name_prefix = config_.KEY_NAME_PREFIX_AD_THRESHOLD
  58. threshold_key_name = f"{threshold_key_name_prefix}{abtest_id}:{abtest_config_tag}:{ab_test_code}:{mid_group}"
  59. threshold = redis_helper.get_data_from_redis(key_name=threshold_key_name)
  60. if threshold is None:
  61. threshold = 0
  62. else:
  63. threshold = float(threshold)
  64. return threshold
  65. def predict_with_rate_process(now_date, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status, mid_group):
  66. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  67. user_data_key = abtest_param['user'].get('data')
  68. user_rule_key = abtest_param['user'].get('rule')
  69. video_data_key = abtest_param['video'].get('data')
  70. # 获取用户组分享率
  71. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
  72. if not redis_helper.key_exists(group_share_rate_key):
  73. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  74. group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
  75. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  76. # 获取视频分享率
  77. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
  78. if not redis_helper.key_exists(video_share_rate_key):
  79. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  80. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
  81. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  82. if video_share_rate is None:
  83. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  84. # 计算 mid-video 分享率
  85. if group_share_rate is None or video_share_rate is None:
  86. return None
  87. mid_video_predict_res = float(group_share_rate) * float(video_share_rate)
  88. # 获取对应的阈值
  89. threshold = get_threshold(
  90. abtest_id=abtest_id,
  91. abtest_config_tag=abtest_config_tag,
  92. ab_test_code=ab_test_code,
  93. mid_group=mid_group,
  94. care_model_status=care_model_status,
  95. abtest_param=abtest_param
  96. )
  97. # 阈值判断
  98. if mid_video_predict_res > threshold:
  99. # 大于阈值,出广告
  100. ad_predict = 2
  101. else:
  102. # 否则,不出广告
  103. ad_predict = 1
  104. result = {
  105. 'mid_group': mid_group,
  106. 'group_share_rate': group_share_rate,
  107. 'video_share_rate': video_share_rate,
  108. 'mid_video_predict_res': mid_video_predict_res,
  109. 'threshold': threshold,
  110. 'ad_predict': ad_predict
  111. }
  112. return result
  113. def predict_mid_video_res(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status, app_type):
  114. # now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  115. # user_data_key = abtest_param['user'].get('data')
  116. # user_rule_key = abtest_param['user'].get('rule')
  117. # video_data_key = abtest_param['video'].get('data')
  118. group_class_key = abtest_param.get('group_class_key')
  119. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  120. no_ad_group_with_video_mapping = abtest_param.get('no_ad_group_with_video_mapping', {})
  121. # 判断mid所属分组
  122. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  123. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  124. if mid_group is None:
  125. mid_group = 'mean_group'
  126. # 判断用户是否在免广告用户组列表中
  127. if mid_group in no_ad_mid_group_list:
  128. # 在免广告用户组列表中,则不出广告
  129. ad_predict = 1
  130. result = {
  131. 'mid_group': mid_group,
  132. 'ad_predict': ad_predict,
  133. 'no_ad_strategy': 'no_ad_mid_group'
  134. }
  135. elif mid_group in no_ad_group_with_video_mapping:
  136. # 用户组在特定内容不出广告设置中
  137. # 获取对应的特定内容
  138. video_mapping_key_list = no_ad_group_with_video_mapping.get(mid_group, [])
  139. no_ad_videos = redis_helper.get_data_from_redis(key_name=f"{config_.KEY_NAME_PREFIX_NO_AD_VIDEOS}{app_type}")
  140. no_ad_videos = json.loads(no_ad_videos)
  141. no_ad_video_list = []
  142. for video_mapping_key in video_mapping_key_list:
  143. no_ad_video_list.extend(no_ad_videos.get(video_mapping_key, []))
  144. # 判断此次请求视频是否在免广告视频列表中
  145. if video_id in no_ad_video_list:
  146. # 在,则不出广告
  147. ad_predict = 1
  148. result = {
  149. 'mid_group': mid_group,
  150. 'ad_predict': ad_predict,
  151. 'no_ad_strategy': 'no_ad_mid_group_with_video'
  152. }
  153. else:
  154. result = predict_with_rate_process(
  155. now_date=now_date,
  156. video_id=video_id,
  157. abtest_param=abtest_param,
  158. abtest_id=abtest_id,
  159. abtest_config_tag=abtest_config_tag,
  160. ab_test_code=ab_test_code,
  161. care_model_status=care_model_status,
  162. mid_group=mid_group)
  163. else:
  164. result = predict_with_rate_process(
  165. now_date=now_date,
  166. video_id=video_id,
  167. abtest_param=abtest_param,
  168. abtest_id=abtest_id,
  169. abtest_config_tag=abtest_config_tag,
  170. ab_test_code=ab_test_code,
  171. care_model_status=care_model_status,
  172. mid_group=mid_group)
  173. return result
  174. def predict_mid_video_res_with_add(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status):
  175. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  176. # 判断mid所属分组
  177. group_class_key = abtest_param.get('group_class_key')
  178. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  179. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  180. if mid_group is None:
  181. mid_group = 'mean_group'
  182. # 判断用户是否在免广告用户组列表中
  183. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  184. if mid_group in no_ad_mid_group_list:
  185. # 在免广告用户组列表中,则不出广告
  186. ad_predict = 1
  187. result = {
  188. 'mid_group': mid_group,
  189. 'ad_predict': ad_predict
  190. }
  191. else:
  192. # 获取用户组出广告后分享的概率
  193. share_user_data_key = abtest_param['share']['user'].get('data')
  194. share_user_rule_key = abtest_param['share']['user'].get('rule')
  195. group_share_rate_key = \
  196. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  197. if not redis_helper.key_exists(group_share_rate_key):
  198. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  199. group_share_rate_key = \
  200. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  201. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  202. # 获取视频出广告后分享的概率
  203. share_video_data_key = abtest_param['share']['video'].get('data')
  204. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{now_dt}"
  205. if not redis_helper.key_exists(video_share_rate_key):
  206. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  207. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{redis_dt}"
  208. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  209. if video_share_rate is None:
  210. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  211. # 获取用户组出广告后不直接跳出的概率
  212. out_user_data_key = abtest_param['out']['user'].get('data')
  213. out_user_rule_key = abtest_param['out']['user'].get('rule')
  214. group_out_rate_key = \
  215. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{now_dt}"
  216. if not redis_helper.key_exists(group_out_rate_key):
  217. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  218. group_out_rate_key = \
  219. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{redis_dt}"
  220. group_out_rate = redis_helper.get_score_with_value(key_name=group_out_rate_key, value=mid_group)
  221. # 获取视频出广告后不直接跳出的概率
  222. out_video_data_key = abtest_param['out']['video'].get('data')
  223. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{now_dt}"
  224. if not redis_helper.key_exists(video_out_rate_key):
  225. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  226. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{redis_dt}"
  227. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=int(video_id))
  228. if video_out_rate is None:
  229. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=-1)
  230. # 计算 mid-video 预测值
  231. if group_share_rate is None or video_share_rate is None or group_out_rate is None or video_out_rate is None:
  232. return None
  233. # 加权融合
  234. share_weight = abtest_param['mix_param']['share_weight']
  235. out_weight = abtest_param['mix_param']['out_weight']
  236. group_rate = share_weight * float(group_share_rate) + out_weight * float(group_out_rate)
  237. video_rate = share_weight * float(video_share_rate) + out_weight * float(video_out_rate)
  238. mid_video_predict_res = group_rate * video_rate
  239. # 获取对应的阈值
  240. threshold = get_threshold(
  241. abtest_id=abtest_id,
  242. abtest_config_tag=abtest_config_tag,
  243. ab_test_code=ab_test_code,
  244. mid_group=mid_group,
  245. care_model_status=care_model_status,
  246. abtest_param=abtest_param
  247. )
  248. # 阈值判断
  249. if mid_video_predict_res > threshold:
  250. # 大于阈值,出广告
  251. ad_predict = 2
  252. else:
  253. # 否则,不出广告
  254. ad_predict = 1
  255. result = {
  256. 'mid_group': mid_group,
  257. 'group_share_rate': group_share_rate,
  258. 'video_share_rate': video_share_rate,
  259. 'group_out_rate': group_out_rate,
  260. 'video_out_rate': video_out_rate,
  261. 'group_rate': group_rate,
  262. 'video_rate': video_rate,
  263. 'mid_video_predict_res': mid_video_predict_res,
  264. 'threshold': threshold,
  265. 'ad_predict': ad_predict}
  266. return result
  267. def predict_mid_video_res_with_multiply(now_date, mid, video_id, abtest_param, abtest_id, abtest_config_tag, ab_test_code, care_model_status):
  268. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  269. # 判断mid所属分组
  270. group_class_key = abtest_param.get('group_class_key')
  271. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  272. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  273. if mid_group is None:
  274. mid_group = 'mean_group'
  275. # 判断用户是否在免广告用户组列表中
  276. no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  277. if mid_group in no_ad_mid_group_list:
  278. # 在免广告用户组列表中,则不出广告
  279. ad_predict = 1
  280. result = {
  281. 'mid_group': mid_group,
  282. 'ad_predict': ad_predict
  283. }
  284. else:
  285. # 获取用户组出广告后分享的概率
  286. share_user_data_key = abtest_param['share']['user'].get('data')
  287. share_user_rule_key = abtest_param['share']['user'].get('rule')
  288. group_share_rate_key = \
  289. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  290. if not redis_helper.key_exists(group_share_rate_key):
  291. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  292. group_share_rate_key = \
  293. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  294. group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  295. # 获取视频出广告后分享的概率
  296. share_video_data_key = abtest_param['share']['video'].get('data')
  297. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{now_dt}"
  298. if not redis_helper.key_exists(video_share_rate_key):
  299. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  300. video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{share_video_data_key}:{redis_dt}"
  301. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  302. if video_share_rate is None:
  303. video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  304. # 获取用户组出广告后不直接跳出的概率
  305. out_user_data_key = abtest_param['out']['user'].get('data')
  306. out_user_rule_key = abtest_param['out']['user'].get('rule')
  307. group_out_rate_key = \
  308. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{now_dt}"
  309. if not redis_helper.key_exists(group_out_rate_key):
  310. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  311. group_out_rate_key = \
  312. f"{config_.KEY_NAME_PREFIX_AD_GROUP}{out_user_data_key}:{out_user_rule_key}:{redis_dt}"
  313. group_out_rate = redis_helper.get_score_with_value(key_name=group_out_rate_key, value=mid_group)
  314. # 获取视频出广告后不直接跳出的概率
  315. out_video_data_key = abtest_param['out']['video'].get('data')
  316. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{now_dt}"
  317. if not redis_helper.key_exists(video_out_rate_key):
  318. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  319. video_out_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{out_video_data_key}:{redis_dt}"
  320. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=int(video_id))
  321. if video_out_rate is None:
  322. video_out_rate = redis_helper.get_score_with_value(key_name=video_out_rate_key, value=-1)
  323. # 计算 mid-video 预测值
  324. if group_share_rate is None or video_share_rate is None or group_out_rate is None or video_out_rate is None:
  325. return None
  326. # 乘积融合
  327. group_rate = float(group_share_rate) * float(group_out_rate)
  328. video_rate = float(video_share_rate) * float(video_out_rate)
  329. mid_video_predict_res = group_rate * video_rate
  330. # 获取对应的阈值
  331. threshold = get_threshold(
  332. abtest_id=abtest_id,
  333. abtest_config_tag=abtest_config_tag,
  334. ab_test_code=ab_test_code,
  335. mid_group=mid_group,
  336. care_model_status=care_model_status,
  337. abtest_param=abtest_param
  338. )
  339. # 阈值判断
  340. if mid_video_predict_res > threshold:
  341. # 大于阈值,出广告
  342. ad_predict = 2
  343. else:
  344. # 否则,不出广告
  345. ad_predict = 1
  346. result = {
  347. 'mid_group': mid_group,
  348. 'group_share_rate': group_share_rate,
  349. 'video_share_rate': video_share_rate,
  350. 'group_out_rate': group_out_rate,
  351. 'video_out_rate': video_out_rate,
  352. 'group_rate': group_rate,
  353. 'video_rate': video_rate,
  354. 'mid_video_predict_res': mid_video_predict_res,
  355. 'threshold': threshold,
  356. 'ad_predict': ad_predict}
  357. return result
  358. def ad_recommend_predict(app_type, mid, video_id, ab_exp_info, ab_test_code, care_model_status):
  359. """
  360. 广告推荐预测
  361. :param app_type: app_type
  362. :param mid: mid
  363. :param video_id: video_id
  364. :param ab_exp_info: AB实验组参数
  365. :param ab_test_code: 用户对应的ab组
  366. :param care_model_status: 用户关怀模式状态 1-未开启,2-开启
  367. :return: ad_predict, type-int, 1-不发放广告,2-发放广告
  368. """
  369. try:
  370. now_date = datetime.datetime.today()
  371. # now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  372. now_h = datetime.datetime.now().hour
  373. if 0 <= now_h < 8:
  374. # 00:00 - 08:00 不出广告
  375. ad_predict = 1
  376. result = {
  377. 'now_h': now_h,
  378. 'ad_predict': ad_predict
  379. }
  380. return result
  381. # 获取实验参数
  382. abtest_id, abtest_config_tag = get_params(ab_exp_info=ab_exp_info, ab_test_code=ab_test_code)
  383. if abtest_id is None or abtest_config_tag is None:
  384. return None
  385. abtest_param = config_.AD_ABTEST_CONFIG.get(f'{abtest_id}-{abtest_config_tag}')
  386. if abtest_param is None:
  387. return None
  388. threshold_mix_func = abtest_param.get('threshold_mix_func', None)
  389. if threshold_mix_func == 'add':
  390. result = predict_mid_video_res_with_add(
  391. now_date=now_date,
  392. mid=mid,
  393. video_id=video_id,
  394. abtest_param=abtest_param,
  395. abtest_id=abtest_id,
  396. abtest_config_tag=abtest_config_tag,
  397. ab_test_code=ab_test_code,
  398. care_model_status=care_model_status
  399. )
  400. elif threshold_mix_func == 'multiply':
  401. result = predict_mid_video_res_with_multiply(
  402. now_date=now_date,
  403. mid=mid,
  404. video_id=video_id,
  405. abtest_param=abtest_param,
  406. abtest_id=abtest_id,
  407. abtest_config_tag=abtest_config_tag,
  408. ab_test_code=ab_test_code,
  409. care_model_status=care_model_status
  410. )
  411. else:
  412. result = predict_mid_video_res(
  413. now_date=now_date,
  414. mid=mid,
  415. video_id=video_id,
  416. abtest_param=abtest_param,
  417. abtest_id=abtest_id,
  418. abtest_config_tag=abtest_config_tag,
  419. ab_test_code=ab_test_code,
  420. care_model_status=care_model_status,
  421. app_type=app_type
  422. )
  423. # user_data_key = abtest_param['user'].get('data')
  424. # user_rule_key = abtest_param['user'].get('rule')
  425. # video_data_key = abtest_param['video'].get('data')
  426. # group_class_key = abtest_param.get('group_class_key')
  427. # no_ad_mid_group_list = abtest_param.get('no_ad_mid_group_list', [])
  428. #
  429. # # 判断mid所属分组
  430. # mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  431. # mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  432. # if mid_group is None:
  433. # mid_group = 'mean_group'
  434. #
  435. # # 判断用户是否在免广告用户组列表中
  436. # if mid_group in no_ad_mid_group_list:
  437. # # 在免广告用户组列表中,则不出广告
  438. # ad_predict = 1
  439. # result = {
  440. # 'mid_group': mid_group,
  441. # 'ad_predict': ad_predict
  442. # }
  443. # else:
  444. # # 获取用户组分享率
  445. # group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{now_dt}"
  446. # if not redis_helper.key_exists(group_share_rate_key):
  447. # redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  448. # group_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{redis_dt}"
  449. # group_share_rate = redis_helper.get_score_with_value(key_name=group_share_rate_key, value=mid_group)
  450. # # 获取视频分享率
  451. # video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{now_dt}"
  452. # if not redis_helper.key_exists(video_share_rate_key):
  453. # redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  454. # video_share_rate_key = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{redis_dt}"
  455. # video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=int(video_id))
  456. # if video_share_rate is None:
  457. # video_share_rate = redis_helper.get_score_with_value(key_name=video_share_rate_key, value=-1)
  458. #
  459. # # 计算 mid-video 分享率
  460. # if group_share_rate is None or video_share_rate is None:
  461. # return None
  462. # mid_video_share_rate = float(group_share_rate) * float(video_share_rate)
  463. #
  464. # # 获取对应的阈值
  465. # threshold = get_threshold(
  466. # abtest_id=abtest_id,
  467. # abtest_config_tag=abtest_config_tag,
  468. # ab_test_code=ab_test_code,
  469. # mid_group=mid_group,
  470. # care_model_status=care_model_status,
  471. # abtest_param=abtest_param
  472. # )
  473. # # 阈值判断
  474. # if mid_video_share_rate > threshold:
  475. # # 大于阈值,出广告
  476. # ad_predict = 2
  477. # else:
  478. # # 否则,不出广告
  479. # ad_predict = 1
  480. # result = {
  481. # 'mid_group': mid_group,
  482. # 'group_share_rate': group_share_rate,
  483. # 'video_share_rate': video_share_rate,
  484. # 'mid_video_share_rate': mid_video_share_rate,
  485. # 'threshold': threshold,
  486. # 'ad_predict': ad_predict}
  487. return result
  488. except Exception as e:
  489. log_.error(traceback.format_exc())
  490. return None
  491. def ad_recommend_predict_with_roi(app_type, mid, video_id, ads, arpu, roi_param):
  492. """
  493. 广告推荐预测
  494. :param app_type: app_type
  495. :param mid: mid
  496. :param video_id: video_id
  497. :param ads: 需要发放广告列表 list
  498. :param arpu: 上一周期arpu值
  499. :param roi_param: 计算roi使用参数
  500. :return: ad_predict, type-int, 1-不发放广告,2-发放广告
  501. """
  502. try:
  503. now_date = datetime.datetime.today()
  504. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  505. ad_info = ads[0]
  506. ad_id = ad_info['adId']
  507. ad_type = ad_info['adType']
  508. ecpm = float(ad_info['ecpm'])
  509. # 获取参数
  510. params = config_.PARAMS_NEW_STRATEGY[int(app_type)]
  511. # 判断mid所属分组
  512. group_class_key = params.get('group_class_key')
  513. mid_group_key_name = f"{config_.KEY_NAME_PREFIX_MID_GROUP}{group_class_key}:{mid}"
  514. mid_group = redis_helper.get_data_from_redis(key_name=mid_group_key_name)
  515. if mid_group is None:
  516. mid_group = 'mean_group'
  517. # 获取用户组出广告后分享的概率
  518. share_user_data_key = params['user'].get('data')
  519. share_user_rule_key = params['user'].get('rule')
  520. group_share_rate_key_with_ad = \
  521. f"{config_.KEY_NAME_PREFIX_GROUP_WITH_AD}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  522. if not redis_helper.key_exists(group_share_rate_key_with_ad):
  523. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  524. group_share_rate_key_with_ad = \
  525. f"{config_.KEY_NAME_PREFIX_GROUP_WITH_AD}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  526. group_share_rate_with_ad = redis_helper.get_score_with_value(key_name=group_share_rate_key_with_ad,
  527. value=mid_group)
  528. # 获取视频出广告后分享的概率
  529. share_video_data_key = params['video'].get('data')
  530. video_share_rate_key_with_ad = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{share_video_data_key}:{now_dt}"
  531. if not redis_helper.key_exists(video_share_rate_key_with_ad):
  532. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  533. video_share_rate_key_with_ad = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{share_video_data_key}:{redis_dt}"
  534. video_share_rate_with_ad = redis_helper.get_score_with_value(key_name=video_share_rate_key_with_ad,
  535. value=int(video_id))
  536. if video_share_rate_with_ad is None:
  537. video_share_rate_with_ad = redis_helper.get_score_with_value(key_name=video_share_rate_key_with_ad,
  538. value=-1)
  539. # 获取用户组不出广告后分享的概率
  540. group_share_rate_key_no_ad = \
  541. f"{config_.KEY_NAME_PREFIX_GROUP_NO_AD}{share_user_data_key}:{share_user_rule_key}:{now_dt}"
  542. if not redis_helper.key_exists(group_share_rate_key_no_ad):
  543. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  544. group_share_rate_key_no_ad = \
  545. f"{config_.KEY_NAME_PREFIX_GROUP_NO_AD}{share_user_data_key}:{share_user_rule_key}:{redis_dt}"
  546. group_share_rate_no_ad = redis_helper.get_score_with_value(key_name=group_share_rate_key_no_ad, value=mid_group)
  547. # 获取视频不出广告后分享的概率
  548. video_share_rate_key_no_ad = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{share_video_data_key}:{now_dt}"
  549. if not redis_helper.key_exists(video_share_rate_key_no_ad):
  550. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  551. video_share_rate_key_no_ad = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{share_video_data_key}:{redis_dt}"
  552. video_share_rate_no_ad = redis_helper.get_score_with_value(key_name=video_share_rate_key_no_ad,
  553. value=int(video_id))
  554. if video_share_rate_no_ad is None:
  555. video_share_rate_no_ad = redis_helper.get_score_with_value(key_name=video_share_rate_key_no_ad, value=-1)
  556. if group_share_rate_with_ad is None or video_share_rate_with_ad is None \
  557. or group_share_rate_no_ad is None or video_share_rate_no_ad is None:
  558. return None
  559. # 计算此次请求出广告后分享的概率
  560. share_rate_with_ad = float(group_share_rate_with_ad) * float(video_share_rate_with_ad)
  561. # 计算此次请求不出广告分享的概率
  562. share_rate_no_ad = float(group_share_rate_no_ad) * float(video_share_rate_no_ad)
  563. # 计算此次请求出广告的收入增益
  564. roi_ad = ecpm / 1000 - float(roi_param) * float(arpu) * (share_rate_no_ad - share_rate_with_ad)
  565. # 收入增益判断
  566. if roi_ad > 0:
  567. # 大于0,出广告
  568. ad_predict = 2
  569. else:
  570. # 否则,不出广告
  571. ad_predict = 1
  572. result = {
  573. 'arpu': arpu,
  574. 'roi_param': roi_param,
  575. 'ad_id': ad_id,
  576. 'ad_type': ad_type,
  577. 'mid_group': mid_group,
  578. 'group_share_rate_with_ad': group_share_rate_with_ad,
  579. 'video_share_rate_with_ad': video_share_rate_with_ad,
  580. 'group_share_rate_no_ad': group_share_rate_no_ad,
  581. 'video_share_rate_no_ad': video_share_rate_no_ad,
  582. 'share_rate_with_ad': share_rate_with_ad,
  583. 'share_rate_no_ad': share_rate_no_ad,
  584. 'roi_ad': roi_ad,
  585. 'ad_predict': ad_predict
  586. }
  587. return result
  588. except Exception as e:
  589. log_.error(traceback.format_exc())
  590. return None