video_rank.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 最惊奇相关推荐相似视频
  23. relevant_recall = [item for item in data['rov_pool_recall']
  24. if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  25. relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  26. # 最惊奇完整影视视频
  27. whole_movies_recall = [item for item in data['rov_pool_recall']
  28. if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  29. whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  30. # 最惊奇影视解说视频
  31. talk_videos_recall = [item for item in data['rov_pool_recall']
  32. if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  33. talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  34. # 小时级更新数据
  35. h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  36. h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 地域分组小时级规则更新数据
  38. region_h_recall = [item for item in data['rov_pool_recall']
  39. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  40. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  41. # 地域分组小时级更新24h规则更新数据
  42. region_24h_recall = [item for item in data['rov_pool_recall']
  43. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  44. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  45. # 地域分组天级规则更新数据
  46. region_day_recall = [item for item in data['rov_pool_recall']
  47. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  48. region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  49. # 相对24h规则更新数据
  50. rule_24h_recall = [item for item in data['rov_pool_recall']
  51. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  52. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  53. # 天级规则更新数据
  54. day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  55. day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  56. # ROV召回池
  57. rov_initial_recall = [
  58. item for item in data['rov_pool_recall']
  59. if item.get('pushFrom') not in
  60. [config_.PUSH_FROM['top_video_relevant_appType_19'],
  61. config_.PUSH_FROM['rov_recall_h'],
  62. config_.PUSH_FROM['rov_recall_region_h'],
  63. config_.PUSH_FROM['rov_recall_region_24h'],
  64. config_.PUSH_FROM['rov_recall_region_day'],
  65. config_.PUSH_FROM['rov_recall_24h'],
  66. config_.PUSH_FROM['rov_recall_day'],
  67. config_.PUSH_FROM['whole_movies'],
  68. config_.PUSH_FROM['talk_videos']]
  69. ]
  70. rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  71. rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  72. region_h_recall_rank + region_24h_recall_rank + region_day_recall_rank + \
  73. rule_24h_recall_rank + day_recall_rank + rov_initial_recall_rank
  74. # 流量池
  75. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  76. # 对各路召回的视频进行去重
  77. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  78. top_K=top_K)
  79. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  80. # rov_recall_rank, flow_recall_rank))
  81. rank_result = relevant_recall_rank
  82. # 从ROV召回池中获取top k
  83. if len(rov_recall_rank) > 0:
  84. rank_result.extend(rov_recall_rank[:top_K])
  85. rov_recall_rank = rov_recall_rank[top_K:]
  86. else:
  87. rank_result.extend(flow_recall_rank[:top_K])
  88. flow_recall_rank = flow_recall_rank[top_K:]
  89. # 按概率 p 及score排序获取 size - k 个视频
  90. i = 0
  91. while i < size - top_K:
  92. # 随机生成[0, 1)浮点数
  93. rand = random.random()
  94. # log_.info('rand: {}'.format(rand))
  95. if rand < flow_pool_P:
  96. if flow_recall_rank:
  97. rank_result.append(flow_recall_rank[0])
  98. flow_recall_rank.remove(flow_recall_rank[0])
  99. else:
  100. rank_result.extend(rov_recall_rank[:size - top_K - i])
  101. return rank_result[:size]
  102. else:
  103. if rov_recall_rank:
  104. rank_result.append(rov_recall_rank[0])
  105. rov_recall_rank.remove(rov_recall_rank[0])
  106. else:
  107. rank_result.extend(flow_recall_rank[:size - top_K - i])
  108. return rank_result[:size]
  109. i += 1
  110. return rank_result[:size]
  111. def remove_duplicate(rov_recall, flow_recall, top_K):
  112. """
  113. 对多路召回的视频去重
  114. 去重原则:
  115. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  116. :param rov_recall: ROV召回池-已排序
  117. :param flow_recall: 流量池-已排序
  118. :param top_K: 保证topK为召回池视频 type-int
  119. :return:
  120. """
  121. flow_recall_result = []
  122. rov_recall_remove = []
  123. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  124. # rov_recall topK
  125. for item in rov_recall[:top_K]:
  126. if item['videoId'] in flow_recall_video_ids:
  127. flow_recall_video_ids.remove(item['videoId'])
  128. # other
  129. for item in rov_recall[top_K:]:
  130. if item['videoId'] in flow_recall_video_ids:
  131. rov_recall_remove.append(item)
  132. # rov recall remove
  133. for item in rov_recall_remove:
  134. rov_recall.remove(item)
  135. # flow recall remove
  136. for item in flow_recall:
  137. if item['videoId'] in flow_recall_video_ids:
  138. flow_recall_result.append(item)
  139. return rov_recall, flow_recall_result
  140. def bottom_strategy(request_id, size, app_type, ab_code, params):
  141. """
  142. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  143. :param request_id: request_id
  144. :param size: 需要获取的视频数
  145. :param app_type: 产品标识 type-int
  146. :param ab_code: abCode
  147. :param params:
  148. :return:
  149. """
  150. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  151. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  152. redis_helper = RedisHelper(params=params)
  153. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  154. if not data:
  155. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  156. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  157. # 二次兜底
  158. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
  159. return bottom_data
  160. # 视频状态过滤采用离线定时过滤方案
  161. # 状态过滤
  162. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  163. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  164. if len(data) > size:
  165. random_data = numpy.random.choice(data, size, False)
  166. else:
  167. random_data = data
  168. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  169. for item in random_data]
  170. return bottom_data
  171. def bottom_strategy_last(size, app_type, ab_code, params):
  172. """
  173. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  174. :param size: 需要获取的视频数
  175. :param app_type: 产品标识 type-int
  176. :param ab_code: abCode
  177. :param params:
  178. :return:
  179. """
  180. redis_helper = RedisHelper(params=params)
  181. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  182. random_data = numpy.random.choice(bottom_data, size * 30, False)
  183. # 视频状态过滤采用离线定时过滤方案
  184. # 状态过滤
  185. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  186. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  187. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  188. for video_id in random_data[:size]]
  189. return bottom_data
  190. def video_rank_by_w_h_rate(videos):
  191. """
  192. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  193. :param videos:
  194. :return:
  195. """
  196. redis_helper = RedisHelper()
  197. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  198. top_2_push_from_flag = [False, False]
  199. for i, video in enumerate(videos[:2]):
  200. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  201. top_2_push_from_flag[i] = True
  202. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  203. return videos
  204. # ##### 判断前两个视频是否为横屏
  205. top_2_w_h_rate_flag = [False, False]
  206. for i, video in enumerate(videos[:2]):
  207. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  208. # 视频来源为置顶 或 流量池时,不做判断
  209. top_2_w_h_rate_flag[i] = True
  210. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  211. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  212. w_h_rate = redis_helper.get_score_with_value(
  213. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  214. if w_h_rate is not None:
  215. top_2_w_h_rate_flag[i] = True
  216. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  217. # 视频来源为 二层兜底时,判断是否是横屏
  218. w_h_rate = redis_helper.get_score_with_value(
  219. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  220. if w_h_rate is not None:
  221. top_2_w_h_rate_flag[i] = True
  222. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  223. return videos
  224. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  225. # 记录横屏视频位置
  226. horizontal_video_index = []
  227. # 记录流量池视频位置
  228. flow_video_index = []
  229. # 记录置顶视频位置
  230. top_video_index = []
  231. for i, video in enumerate(videos):
  232. # 视频来源为置顶
  233. if video['pushFrom'] == config_.PUSH_FROM['top']:
  234. top_video_index.append(i)
  235. # 视频来源为流量池
  236. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  237. flow_video_index.append(i)
  238. # 视频来源为rov召回池 或 一层兜底
  239. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  240. w_h_rate = redis_helper.get_score_with_value(
  241. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  242. if w_h_rate is not None:
  243. horizontal_video_index.append(i)
  244. else:
  245. continue
  246. # 视频来源为 二层兜底
  247. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  248. w_h_rate = redis_helper.get_score_with_value(
  249. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  250. if w_h_rate is not None:
  251. horizontal_video_index.append(i)
  252. else:
  253. continue
  254. # 重新排序
  255. top2_index = []
  256. for i in range(2):
  257. if i in top_video_index:
  258. top2_index.append(i)
  259. elif i in flow_video_index:
  260. top2_index.append(i)
  261. flow_video_index.remove(i)
  262. elif i in horizontal_video_index:
  263. top2_index.append(i)
  264. horizontal_video_index.remove(i)
  265. elif len(horizontal_video_index) > 0:
  266. # 调整横屏视频到第一位
  267. top2_index.append(horizontal_video_index[0])
  268. # 从横屏位置记录中移除
  269. horizontal_video_index.pop(0)
  270. elif i == 0:
  271. return videos
  272. # 重排
  273. flow_result = [videos[i] for i in flow_video_index]
  274. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  275. top2_result = []
  276. for i, j in enumerate(top2_index):
  277. item = videos[j]
  278. if i != j:
  279. # 修改abCode
  280. item['abCode'] = config_.AB_CODE['w_h_rate']
  281. top2_result.append(item)
  282. new_rank_result = top2_result
  283. for i in range(len(top2_index), len(videos)):
  284. if i in flow_video_index:
  285. new_rank_result.append(flow_result[0])
  286. flow_result.pop(0)
  287. else:
  288. new_rank_result.append(other_result[0])
  289. other_result.pop(0)
  290. return new_rank_result
  291. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  292. """
  293. 视频分发排序 - 包含老视频, 老视频插入固定位置
  294. :param rank_result: 排序后的结果
  295. :param size: 请求数
  296. :param old_video_index: 老视频插入的位置索引,默认为2
  297. :return: new_rank_result
  298. """
  299. if not old_video_recall:
  300. return rank_result
  301. if not rank_result:
  302. return old_video_recall[:size]
  303. # 视频去重
  304. rank_video_ids = [item['videoId'] for item in rank_result]
  305. old_video_remove = []
  306. for old_video in old_video_recall:
  307. if old_video['videoId'] in rank_video_ids:
  308. old_video_remove.append(old_video)
  309. for item in old_video_remove:
  310. old_video_recall.remove(item)
  311. if not old_video_recall:
  312. return rank_result
  313. # 插入老视频
  314. # 随机获取一个视频
  315. ind = random.randint(0, len(old_video_recall) - 1)
  316. old_video = old_video_recall[ind]
  317. # 插入
  318. if len(rank_result) < top_K:
  319. new_rank_result = rank_result + [old_video]
  320. else:
  321. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  322. if len(new_rank_result) > size:
  323. # 判断后两位视频来源
  324. push_from_1 = new_rank_result[-1]['pushFrom']
  325. push_from_2 = new_rank_result[-2]['pushFrom']
  326. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  327. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  328. return new_rank_result[:size]
  329. if __name__ == '__main__':
  330. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  331. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  332. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  333. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  334. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  335. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  336. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  337. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  338. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  339. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  340. res = video_rank_by_w_h_rate(videos=d_test)
  341. for tmp in res:
  342. print(tmp)