video_rank.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos, send_msg_to_feishu
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size, top_K, flow_pool_P):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :param top_K: 保证topK为召回池视频 type-int
  16. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  17. :return: rank_result
  18. """
  19. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  20. return None
  21. # 将各路召回的视频按照score从大到小排序
  22. # 小时级更新数据
  23. h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  24. h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  25. # 天级规则更新数据
  26. day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  27. day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  28. # ROV召回池
  29. rov_initial_recall = [
  30. item for item in data['rov_pool_recall']
  31. if item.get('pushFrom') not in [config_.PUSH_FROM['rov_recall_h'], config_.PUSH_FROM['rov_recall_day']]
  32. ]
  33. rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  34. rov_recall_rank = h_recall_rank + day_recall_rank + rov_initial_recall_rank
  35. # 流量池
  36. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  37. # 对各路召回的视频进行去重
  38. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  39. top_K=top_K)
  40. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  41. # rov_recall_rank, flow_recall_rank))
  42. # 从ROV召回池中获取top k
  43. if len(rov_recall_rank) > 0:
  44. rank_result = rov_recall_rank[:top_K]
  45. rov_recall_rank = rov_recall_rank[top_K:]
  46. else:
  47. rank_result = flow_recall_rank[:top_K]
  48. flow_recall_rank = flow_recall_rank[top_K:]
  49. # 按概率 p 及score排序获取 size - k 个视频
  50. i = 0
  51. while i < size - top_K:
  52. # 随机生成[0, 1)浮点数
  53. rand = random.random()
  54. # log_.info('rand: {}'.format(rand))
  55. if rand < flow_pool_P:
  56. if flow_recall_rank:
  57. rank_result.append(flow_recall_rank[0])
  58. flow_recall_rank.remove(flow_recall_rank[0])
  59. else:
  60. rank_result.extend(rov_recall_rank[:size - top_K - i])
  61. return rank_result
  62. else:
  63. if rov_recall_rank:
  64. rank_result.append(rov_recall_rank[0])
  65. rov_recall_rank.remove(rov_recall_rank[0])
  66. else:
  67. rank_result.extend(flow_recall_rank[:size - top_K - i])
  68. return rank_result
  69. i += 1
  70. return rank_result
  71. def remove_duplicate(rov_recall, flow_recall, top_K):
  72. """
  73. 对多路召回的视频去重
  74. 去重原则:
  75. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  76. :param rov_recall: ROV召回池-已排序
  77. :param flow_recall: 流量池-已排序
  78. :param top_K: 保证topK为召回池视频 type-int
  79. :return:
  80. """
  81. flow_recall_result = []
  82. rov_recall_remove = []
  83. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  84. # rov_recall topK
  85. for item in rov_recall[:top_K]:
  86. if item['videoId'] in flow_recall_video_ids:
  87. flow_recall_video_ids.remove(item['videoId'])
  88. # other
  89. for item in rov_recall[top_K:]:
  90. if item['videoId'] in flow_recall_video_ids:
  91. rov_recall_remove.append(item)
  92. # rov recall remove
  93. for item in rov_recall_remove:
  94. rov_recall.remove(item)
  95. # flow recall remove
  96. for item in flow_recall:
  97. if item['videoId'] in flow_recall_video_ids:
  98. flow_recall_result.append(item)
  99. return rov_recall, flow_recall_result
  100. def bottom_strategy(size, app_type, ab_code):
  101. """
  102. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  103. :param size: 需要获取的视频数
  104. :param app_type: 产品标识 type-int
  105. :param ab_code: abCode
  106. :return:
  107. """
  108. pool_recall = PoolRecall(app_type=app_type, ab_code=ab_code)
  109. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  110. redis_helper = RedisHelper()
  111. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  112. if not data:
  113. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  114. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  115. # 二次兜底
  116. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code)
  117. return bottom_data
  118. # 视频状态过滤采用离线定时过滤方案
  119. # 状态过滤
  120. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  121. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  122. if len(data) > size:
  123. random_data = numpy.random.choice(data, size, False)
  124. else:
  125. random_data = data
  126. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  127. for item in random_data]
  128. return bottom_data
  129. def bottom_strategy_last(size, app_type, ab_code):
  130. """
  131. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  132. :param size: 需要获取的视频数
  133. :param app_type: 产品标识 type-int
  134. :param ab_code: abCode
  135. :return:
  136. """
  137. redis_helper = RedisHelper()
  138. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  139. random_data = numpy.random.choice(bottom_data, size * 30, False)
  140. # 视频状态过滤采用离线定时过滤方案
  141. # 状态过滤
  142. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  143. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  144. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  145. for video_id in random_data[:size]]
  146. return bottom_data
  147. def video_rank_by_w_h_rate(videos):
  148. """
  149. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  150. :param videos:
  151. :return:
  152. """
  153. redis_helper = RedisHelper()
  154. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  155. top_2_push_from_flag = [False, False]
  156. for i, video in enumerate(videos[:2]):
  157. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  158. top_2_push_from_flag[i] = True
  159. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  160. return videos
  161. # ##### 判断前两个视频是否为横屏
  162. top_2_w_h_rate_flag = [False, False]
  163. for i, video in enumerate(videos[:2]):
  164. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  165. # 视频来源为置顶 或 流量池时,不做判断
  166. top_2_w_h_rate_flag[i] = True
  167. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  168. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  169. w_h_rate = redis_helper.get_score_with_value(
  170. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  171. if w_h_rate is not None:
  172. top_2_w_h_rate_flag[i] = True
  173. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  174. # 视频来源为 二层兜底时,判断是否是横屏
  175. w_h_rate = redis_helper.get_score_with_value(
  176. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  177. if w_h_rate is not None:
  178. top_2_w_h_rate_flag[i] = True
  179. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  180. return videos
  181. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  182. # 记录横屏视频位置
  183. horizontal_video_index = []
  184. # 记录流量池视频位置
  185. flow_video_index = []
  186. # 记录置顶视频位置
  187. top_video_index = []
  188. for i, video in enumerate(videos):
  189. # 视频来源为置顶
  190. if video['pushFrom'] == config_.PUSH_FROM['top']:
  191. top_video_index.append(i)
  192. # 视频来源为流量池
  193. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  194. flow_video_index.append(i)
  195. # 视频来源为rov召回池 或 一层兜底
  196. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  197. w_h_rate = redis_helper.get_score_with_value(
  198. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  199. if w_h_rate is not None:
  200. horizontal_video_index.append(i)
  201. else:
  202. continue
  203. # 视频来源为 二层兜底
  204. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  205. w_h_rate = redis_helper.get_score_with_value(
  206. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  207. if w_h_rate is not None:
  208. horizontal_video_index.append(i)
  209. else:
  210. continue
  211. # 重新排序
  212. top2_index = []
  213. for i in range(2):
  214. if i in top_video_index:
  215. top2_index.append(i)
  216. elif i in flow_video_index:
  217. top2_index.append(i)
  218. flow_video_index.remove(i)
  219. elif i in horizontal_video_index:
  220. top2_index.append(i)
  221. horizontal_video_index.remove(i)
  222. elif len(horizontal_video_index) > 0:
  223. # 调整横屏视频到第一位
  224. top2_index.append(horizontal_video_index[0])
  225. # 从横屏位置记录中移除
  226. horizontal_video_index.pop(0)
  227. elif i == 0:
  228. return videos
  229. # 重排
  230. flow_result = [videos[i] for i in flow_video_index]
  231. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  232. top2_result = []
  233. for i, j in enumerate(top2_index):
  234. item = videos[j]
  235. if i != j:
  236. # 修改abCode
  237. item['abCode'] = config_.AB_CODE['w_h_rate']
  238. top2_result.append(item)
  239. new_rank_result = top2_result
  240. for i in range(len(top2_index), len(videos)):
  241. if i in flow_video_index:
  242. new_rank_result.append(flow_result[0])
  243. flow_result.pop(0)
  244. else:
  245. new_rank_result.append(other_result[0])
  246. other_result.pop(0)
  247. return new_rank_result
  248. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  249. """
  250. 视频分发排序 - 包含老视频, 老视频插入固定位置
  251. :param rank_result: 排序后的结果
  252. :param size: 请求数
  253. :param old_video_index: 老视频插入的位置索引,默认为2
  254. :return: new_rank_result
  255. """
  256. if not old_video_recall:
  257. return rank_result
  258. if not rank_result:
  259. return old_video_recall[:size]
  260. # 视频去重
  261. rank_video_ids = [item['videoId'] for item in rank_result]
  262. old_video_remove = []
  263. for old_video in old_video_recall:
  264. if old_video['videoId'] in rank_video_ids:
  265. old_video_remove.append(old_video)
  266. for item in old_video_remove:
  267. old_video_recall.remove(item)
  268. if not old_video_recall:
  269. return rank_result
  270. # 插入老视频
  271. # 随机获取一个视频
  272. ind = random.randint(0, len(old_video_recall) - 1)
  273. old_video = old_video_recall[ind]
  274. # 插入
  275. if len(rank_result) < top_K:
  276. new_rank_result = rank_result + [old_video]
  277. else:
  278. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  279. if len(new_rank_result) > size:
  280. # 判断后两位视频来源
  281. push_from_1 = new_rank_result[-1]['pushFrom']
  282. push_from_2 = new_rank_result[-2]['pushFrom']
  283. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  284. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  285. return new_rank_result[:size]
  286. if __name__ == '__main__':
  287. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  288. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  289. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  290. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  291. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  292. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  293. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  294. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  295. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  296. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  297. res = video_rank_by_w_h_rate(videos=d_test)
  298. for tmp in res:
  299. print(tmp)