recommend.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(request_id, app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param request_id: request_id
  22. :param app_type: 产品标识 type-int
  23. :param mid: mid
  24. :param uid: uid
  25. :param head_vid: 相关推荐头部视频id type-int
  26. :param videos: 当前相关推荐结果 type-list
  27. :param size: 返回视频个数 type-int
  28. :return: rank_result
  29. """
  30. # 获取头部视频对应的相关性视频
  31. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  32. redis_helper = RedisHelper()
  33. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  34. if relevant_videos is None:
  35. # 该视频没有指定的相关性视频
  36. return videos
  37. relevant_videos = json.loads(relevant_videos)
  38. # 按照指定顺序排序
  39. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  40. # 过滤
  41. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  42. filter_helper = FilterVideos(request_id=request_id, app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  43. filtered_ids = filter_helper.filter_videos()
  44. if filtered_ids is None:
  45. return videos
  46. # 获取生效中的视频
  47. now = int(time.time())
  48. relevant_videos_in_effect = [
  49. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  50. 'abCode': config_.AB_CODE['relevant_video_op']}
  51. for item in relevant_videos_sorted
  52. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  53. ]
  54. if len(relevant_videos_in_effect) == 0:
  55. return videos
  56. # 与现有排序结果 进行合并重排
  57. # 获取现有排序结果中流量池视频 及其位置
  58. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  59. flow_pool_videos = []
  60. other_videos = []
  61. for i, item in enumerate(videos):
  62. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  63. flow_pool_videos.append((i, item))
  64. elif item.get('videoId') not in relevant_ids:
  65. other_videos.append(item)
  66. else:
  67. continue
  68. # 重排,保持流量池视频位置不变
  69. rank_result = relevant_videos_in_effect + other_videos
  70. for i, item in flow_pool_videos:
  71. rank_result.insert(i, item)
  72. return rank_result[:size]
  73. def video_position_recommend(request_id, mid, uid, app_type, videos):
  74. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  75. # algo_type=algo_type, client_info=client_info)
  76. redis_helper = RedisHelper()
  77. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  78. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  79. if pos1_vids is not None:
  80. pos1_vids = ast.literal_eval(pos1_vids)
  81. if pos2_vids is not None:
  82. pos2_vids = ast.literal_eval(pos2_vids)
  83. pos1_vids = [] if pos1_vids is None else pos1_vids
  84. pos2_vids = [] if pos2_vids is None else pos2_vids
  85. pos1_vids = [int(i) for i in pos1_vids]
  86. pos2_vids = [int(i) for i in pos2_vids]
  87. filter_1 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  88. filter_2 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  89. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  90. gevent.joinall(t)
  91. filted_list = [i.get() for i in t]
  92. pos1_vids = filted_list[0]
  93. pos2_vids = filted_list[1]
  94. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  95. if pos1_vids is not None and len(pos1_vids) >0 :
  96. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  97. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  98. if pos2_vids is not None and len(pos2_vids) >0 :
  99. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  100. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  101. return videos[:10]
  102. def positon_duplicate(pos1_vids, pos2_vids, videos):
  103. s = set()
  104. if pos1_vids is not None and len(pos1_vids) >0:
  105. s.add(int(pos1_vids[0]))
  106. if pos2_vids is not None and len(pos2_vids) >0:
  107. s.add(int(pos2_vids[0]))
  108. l = []
  109. for item in videos:
  110. if item['videoId'] in s:
  111. continue
  112. else:
  113. l.append(item)
  114. return l
  115. def video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info, expire_time=24*3600,
  116. ab_code=config_.AB_CODE['initial'], rule_key='', no_op_flag=False, old_video_index=-1, video_id=None):
  117. """
  118. 首页线上推荐逻辑
  119. :param request_id: request_id
  120. :param mid: mid type-string
  121. :param uid: uid type-string
  122. :param size: 请求视频数量 type-int
  123. :param top_K: 保证topK为召回池视频 type-int
  124. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  125. :param app_type: 产品标识 type-int
  126. :param algo_type: 算法类型 type-string
  127. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  128. :param expire_time: 末位视频记录redis过期时间
  129. :param ab_code: AB实验code
  130. :param video_id: 相关推荐头部视频id
  131. :return:
  132. """
  133. # ####### 多进程召回
  134. start_recall = time.time()
  135. # log_.info('====== recall')
  136. '''
  137. cores = multiprocessing.cpu_count()
  138. pool = multiprocessing.Pool(processes=cores)
  139. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  140. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  141. pool_list = [
  142. # rov召回池
  143. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  144. # 流量池
  145. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  146. ]
  147. recall_result_list = [p.get() for p in pool_list]
  148. pool.close()
  149. pool.join()
  150. '''
  151. recall_result_list = []
  152. pool_recall = PoolRecall(request_id=request_id,
  153. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  154. client_info=client_info, rule_key=rule_key, no_op_flag=no_op_flag)
  155. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  156. # 小时级实验
  157. if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()]:
  158. t = [gevent.spawn(pool_recall.rule_recall_by_h, size, expire_time),
  159. gevent.spawn(pool_recall.flow_pool_recall, size)]
  160. # 小时级实验
  161. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  162. t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  163. gevent.spawn(pool_recall.flow_pool_recall, size)]
  164. # 地域分组实验
  165. elif ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  166. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  167. gevent.spawn(pool_recall.flow_pool_recall, size)]
  168. # 最惊奇相关推荐实验
  169. elif ab_code == config_.AB_CODE['top_video_relevant_appType_19']:
  170. t = [gevent.spawn(pool_recall.relevant_recall_19, video_id, size, expire_time),
  171. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  172. # 最惊奇完整影视实验
  173. elif ab_code == config_.AB_CODE['whole_movies']:
  174. t = [gevent.spawn(pool_recall.rov_pool_recall_19, size, expire_time)]
  175. # 最惊奇/老好看实验
  176. elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  177. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  178. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  179. # 天级实验
  180. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  181. t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  182. gevent.spawn(pool_recall.flow_pool_recall, size)]
  183. # 老视频实验
  184. # elif ab_code in [config_.AB_CODE['old_video']]:
  185. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  186. # gevent.spawn(pool_recall.flow_pool_recall, size),
  187. # gevent.spawn(pool_recall.old_videos_recall, size)]
  188. else:
  189. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  190. gevent.spawn(pool_recall.flow_pool_recall, size)]
  191. gevent.joinall(t)
  192. recall_result_list = [i.get() for i in t]
  193. end_recall = time.time()
  194. log_.info({'request_id': request_id,
  195. 'mid': mid,
  196. 'uid': uid,
  197. 'operation': 'recall',
  198. 'recall_result': recall_result_list,
  199. 'executeTime': (end_recall - start_recall) * 1000})
  200. # ####### 排序
  201. start_rank = time.time()
  202. # log_.info('====== rank')
  203. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  204. if ab_code in [
  205. config_.AB_CODE['rov_rank_appType_18_19'],
  206. config_.AB_CODE['rov_rank_appType_19'],
  207. config_.AB_CODE['top_video_relevant_appType_19']
  208. ]:
  209. data = {
  210. 'rov_pool_recall': recall_result_list[0],
  211. 'flow_pool_recall': recall_result_list[1]
  212. }
  213. else:
  214. data = {
  215. 'rov_pool_recall': recall_result_list[0],
  216. 'flow_pool_recall': []
  217. }
  218. else:
  219. data = {
  220. 'rov_pool_recall': recall_result_list[0],
  221. 'flow_pool_recall': recall_result_list[1]
  222. }
  223. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=flow_pool_P)
  224. # 老视频实验
  225. # if ab_code in [config_.AB_CODE['old_video']]:
  226. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  227. # size=size, top_K=top_K, old_video_index=old_video_index)
  228. end_rank = time.time()
  229. log_.info({'request_id': request_id,
  230. 'mid': mid,
  231. 'uid': uid,
  232. 'operation': 'rank',
  233. 'rank_result': rank_result,
  234. 'executeTime': (end_rank - start_rank) * 1000})
  235. if not rank_result:
  236. # 兜底策略
  237. # log_.info('====== bottom strategy')
  238. start_bottom = time.time()
  239. rank_result = bottom_strategy(request_id=request_id, size=size, app_type=app_type, ab_code=ab_code)
  240. end_bottom = time.time()
  241. log_.info({'request_id': request_id,
  242. 'mid': mid,
  243. 'uid': uid,
  244. 'operation': 'bottom',
  245. 'bottom_result': rank_result,
  246. 'executeTime': (end_bottom - start_bottom) * 1000})
  247. return rank_result, last_rov_recall_key
  248. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  249. """
  250. 对排序后的结果 按照AB实验进行对应的分组操作
  251. :param rank_result: 排序后的结果
  252. :param ab_code_list: 此次请求参与的 ab实验组
  253. :param app_type: 产品标识
  254. :param mid: mid
  255. :param uid: uid
  256. :param kwargs: 其他参数
  257. :return:
  258. """
  259. # ####### 视频宽高比AB实验
  260. # 对内容精选进行 视频宽高比分发实验
  261. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  262. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  263. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  264. # app_type, mid, uid, rank_result))
  265. # 按position位置排序
  266. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  267. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  268. print('===========================')
  269. print(rank_result)
  270. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  271. app_type, mid, uid, rank_result))
  272. # 相关推荐强插
  273. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  274. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  275. # head_vid = kwargs['head_vid']
  276. # size = kwargs['size']
  277. # rank_result = relevant_video_top_recommend(
  278. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  279. # )
  280. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  281. # app_type, mid, uid, head_vid, rank_result))
  282. return rank_result
  283. def update_redis_data(result, app_type, mid, last_rov_recall_key, top_K, expire_time=24*3600):
  284. """
  285. 根据最终的排序结果更新相关redis数据
  286. :param result: 排序结果
  287. :param app_type: 产品标识
  288. :param mid: mid
  289. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  290. :param top_K: 保证topK为召回池视频 type-int
  291. :param expire_time: 末位视频记录redis过期时间
  292. :return: None
  293. """
  294. # ####### redis数据刷新
  295. try:
  296. # log_.info('====== update redis')
  297. if mid and mid != 'null':
  298. # mid为空时,不做预曝光和定位数据更新
  299. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  300. redis_helper = RedisHelper()
  301. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  302. preview_video_ids = [int(item['videoId']) for item in result]
  303. if preview_video_ids:
  304. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  305. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  306. # log_.info('preview redis update success!')
  307. # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  308. rov_recall_video = [item['videoId'] for item in result[:top_K]
  309. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  310. if len(rov_recall_video) > 0:
  311. if app_type == config_.APP_TYPE['APP']:
  312. key_name = config_.UPDATE_ROV_KEY_NAME_APP
  313. else:
  314. key_name = config_.UPDATE_ROV_KEY_NAME
  315. if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  316. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  317. expire_time=expire_time)
  318. # log_.info('last video redis update success!')
  319. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  320. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  321. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  322. if flow_recall_video:
  323. update_local_distribute_count(flow_recall_video)
  324. # log_.info('update local distribute count success!')
  325. except Exception as e:
  326. log_.error("update redis data fail!")
  327. log_.error(traceback.format_exc())
  328. def update_local_distribute_count(videos):
  329. """
  330. 更新本地分发数
  331. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  332. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  333. :return:
  334. """
  335. try:
  336. redis_helper = RedisHelper()
  337. for item in videos:
  338. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  339. # 本地记录的分发数 - 1
  340. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  341. # if redis_helper.key_exists(key_name=key_name):
  342. # # 该视频本地有记录,本地记录的分发数 - 1
  343. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  344. # else:
  345. # # 该视频本地无记录,接口获取的分发数 - 1
  346. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  347. except Exception as e:
  348. log_.error('update_local_distribute_count error...')
  349. log_.error(traceback.format_exc())
  350. def get_recommend_params(ab_exp_info, page_type=0):
  351. """
  352. 根据实验分组给定对应的推荐参数
  353. :param ab_exp_info: AB实验组参数
  354. :param page_type: 页面区分参数,默认:0(首页)
  355. :return:
  356. """
  357. top_K = config_.K
  358. flow_pool_P = config_.P
  359. # 不获取人工干预数据标记
  360. no_op_flag = False
  361. old_video_index = -1
  362. if not ab_exp_info:
  363. ab_code = config_.AB_CODE['initial']
  364. expire_time = 24 * 3600
  365. rule_key = config_.RULE_KEY['initial']
  366. # old_video_index = -1
  367. else:
  368. ab_exp_code_list = []
  369. config_value_dict = {}
  370. for _, item in ab_exp_info.items():
  371. if not item:
  372. continue
  373. for ab_item in item:
  374. ab_exp_code = ab_item.get('abExpCode', None)
  375. if not ab_exp_code:
  376. continue
  377. ab_exp_code_list.append(str(ab_exp_code))
  378. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  379. # 推荐条数 10->4 实验
  380. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  381. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  382. # if config_value:
  383. # config_value = eval(str(config_value))
  384. # else:
  385. # config_value = {}
  386. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  387. # size = int(config_value.get('size', 4))
  388. # top_K = int(config_value.get('K', 3))
  389. # flow_pool_P = float(config_value.get('P', 0.3))
  390. # else:
  391. # size = size
  392. # top_K = config_.K
  393. # flow_pool_P = config_.P
  394. # 算法实验相对对照组
  395. # if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  396. # ab_code = config_.AB_CODE['ab_initial']
  397. # expire_time = 24 * 3600
  398. # rule_key = config_.RULE_KEY['initial']
  399. # no_op_flag = True
  400. # 小时级更新-规则1 实验
  401. # elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  402. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  403. # expire_time = 3600
  404. # rule_key = config_.RULE_KEY['rule_rank1']
  405. # no_op_flag = True
  406. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  407. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  408. # expire_time = 3600
  409. # rule_key = config_.RULE_KEY['rule_rank2']
  410. # elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  411. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  412. # expire_time = 3600
  413. # rule_key = config_.RULE_KEY['rule_rank3']
  414. # no_op_flag = True
  415. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  416. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  417. # expire_time = 3600
  418. # rule_key = config_.RULE_KEY['rule_rank4']
  419. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  420. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  421. # expire_time = 3600
  422. # rule_key = config_.RULE_KEY['rule_rank5']
  423. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  424. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  425. # expire_time = 24 * 3600
  426. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  427. # no_op_flag = True
  428. if config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  429. ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  430. expire_time = 3600
  431. rule_key = config_.RULE_KEY['rule_rank6']
  432. no_op_flag = True
  433. # elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  434. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  435. # expire_time = 24 * 3600
  436. # rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  437. # no_op_flag = True
  438. # elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  439. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  440. # expire_time = 3600
  441. # rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  442. # no_op_flag = True
  443. elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  444. ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  445. expire_time = 3600
  446. rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  447. no_op_flag = True
  448. elif config_.AB_EXP_CODE['24h_rule_rank2'] in ab_exp_code_list:
  449. ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank2')
  450. expire_time = 3600
  451. rule_key = config_.RULE_KEY_24H['24h_rule_rank2']
  452. no_op_flag = True
  453. # elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  454. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  455. # expire_time = 3600
  456. # rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  457. # no_op_flag = True
  458. elif config_.AB_EXP_CODE['region_rule_rank3'] in ab_exp_code_list:
  459. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  460. expire_time = 3600
  461. rule_key = config_.RULE_KEY_REGION['region_rule_rank3']
  462. no_op_flag = True
  463. else:
  464. ab_code = config_.AB_CODE['initial']
  465. expire_time = 24 * 3600
  466. rule_key = config_.RULE_KEY['initial']
  467. # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  468. if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  469. ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  470. expire_time = 3600
  471. flow_pool_P = config_.P_18_19
  472. no_op_flag = True
  473. elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  474. ab_code = config_.AB_CODE['rov_rank_appType_19']
  475. expire_time = 3600
  476. top_K = 0
  477. flow_pool_P = config_.P_18_19
  478. no_op_flag = True
  479. elif config_.AB_EXP_CODE['top_video_relevant_appType_19'] in ab_exp_code_list and page_type == 2:
  480. ab_code = config_.AB_CODE['top_video_relevant_appType_19']
  481. expire_time = 3600
  482. top_K = 1
  483. flow_pool_P = config_.P_18_19
  484. no_op_flag = True
  485. # 票圈最惊奇完整影视资源实验
  486. elif config_.AB_EXP_CODE['whole_movies'] in ab_exp_code_list:
  487. ab_code = config_.AB_CODE['whole_movies']
  488. expire_time = 24 * 3600
  489. no_op_flag = True
  490. # 老视频实验
  491. # if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  492. # ab_code = config_.AB_CODE['old_video']
  493. # no_op_flag = True
  494. # old_video_index = 2
  495. # else:
  496. # old_video_index = -1
  497. return top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index
  498. def video_homepage_recommend(request_id, mid, uid, size, app_type, algo_type, client_info, ab_exp_info):
  499. """
  500. 首页线上推荐逻辑
  501. :param request_id: request_id
  502. :param mid: mid type-string
  503. :param uid: uid type-string
  504. :param size: 请求视频数量 type-int
  505. :param app_type: 产品标识 type-int
  506. :param algo_type: 算法类型 type-string
  507. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  508. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  509. :return:
  510. """
  511. # 对 vlog 切换10%的流量做实验
  512. # 对mid进行哈希
  513. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  514. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  515. # # 简单召回 - 排序 - 兜底
  516. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  517. # algo_type=algo_type, client_info=client_info,
  518. # expire_time=3600,
  519. # ab_code=config_.AB_CODE['rank_by_h'])
  520. # # ab-test
  521. # result = ab_test_op(rank_result=rank_result,
  522. # ab_code_list=[config_.AB_CODE['position_insert']],
  523. # app_type=app_type, mid=mid, uid=uid)
  524. # # redis数据刷新
  525. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  526. # expire_time=3600)
  527. if app_type == config_.APP_TYPE['APP']:
  528. # 票圈视频APP
  529. top_K = config_.K
  530. flow_pool_P = config_.P
  531. # 简单召回 - 排序 - 兜底
  532. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  533. mid=mid, uid=uid, app_type=app_type,
  534. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  535. algo_type=algo_type, client_info=client_info,
  536. expire_time=12 * 3600)
  537. # ab-test
  538. # result = ab_test_op(rank_result=rank_result,
  539. # ab_code_list=[config_.AB_CODE['position_insert']],
  540. # app_type=app_type, mid=mid, uid=uid)
  541. # redis数据刷新
  542. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  543. top_K=top_K, expire_time=12 * 3600)
  544. else:
  545. param_st = time.time()
  546. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  547. get_recommend_params(ab_exp_info=ab_exp_info)
  548. log_.info({'request_id': request_id,
  549. 'app_type': app_type,
  550. 'mid': mid,
  551. 'uid': uid,
  552. 'operation': 'get_recommend_params',
  553. 'executeTime': (time.time() - param_st) * 1000})
  554. # 简单召回 - 排序 - 兜底
  555. get_result_st = time.time()
  556. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  557. mid=mid, uid=uid, app_type=app_type,
  558. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  559. algo_type=algo_type, client_info=client_info,
  560. ab_code=ab_code, expire_time=expire_time,
  561. rule_key=rule_key, no_op_flag=no_op_flag,
  562. old_video_index=old_video_index)
  563. log_.info({'request_id': request_id,
  564. 'app_type': app_type,
  565. 'mid': mid,
  566. 'uid': uid,
  567. 'operation': 'get_recommend_result',
  568. 'executeTime': (time.time() - get_result_st) * 1000})
  569. # ab-test
  570. # result = ab_test_op(rank_result=rank_result,
  571. # ab_code_list=[config_.AB_CODE['position_insert']],
  572. # app_type=app_type, mid=mid, uid=uid)
  573. # redis数据刷新
  574. update_redis_st = time.time()
  575. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  576. top_K=top_K)
  577. log_.info({'request_id': request_id,
  578. 'app_type': app_type,
  579. 'mid': mid,
  580. 'uid': uid,
  581. 'operation': 'update_redis_data',
  582. 'executeTime': (time.time() - update_redis_st) * 1000})
  583. return rank_result
  584. def video_relevant_recommend(request_id, video_id, mid, uid, size, app_type, ab_exp_info, client_info, page_type):
  585. """
  586. 相关推荐逻辑
  587. :param request_id: request_id
  588. :param video_id: 相关推荐的头部视频id
  589. :param mid: mid type-string
  590. :param uid: uid type-string
  591. :param size: 请求视频数量 type-int
  592. :param app_type: 产品标识 type-int
  593. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  594. :param client_info: 地域参数
  595. :param page_type: 页面区分参数 1:详情页;2:分享页
  596. :return: videos type-list
  597. """
  598. param_st = time.time()
  599. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  600. get_recommend_params(ab_exp_info=ab_exp_info, page_type=page_type)
  601. log_.info({'request_id': request_id,
  602. 'app_type': app_type,
  603. 'mid': mid,
  604. 'uid': uid,
  605. 'operation': 'get_recommend_params',
  606. 'executeTime': (time.time() - param_st) * 1000})
  607. # 简单召回 - 排序 - 兜底
  608. get_result_st = time.time()
  609. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  610. mid=mid, uid=uid, app_type=app_type,
  611. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  612. algo_type='', client_info=client_info,
  613. ab_code=ab_code, expire_time=expire_time,
  614. rule_key=rule_key, no_op_flag=no_op_flag,
  615. old_video_index=old_video_index, video_id=video_id)
  616. log_.info({'request_id': request_id,
  617. 'app_type': app_type,
  618. 'mid': mid,
  619. 'uid': uid,
  620. 'operation': 'get_recommend_result',
  621. 'executeTime': (time.time() - get_result_st) * 1000})
  622. # ab-test
  623. # result = ab_test_op(rank_result=rank_result,
  624. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  625. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  626. # redis数据刷新
  627. update_redis_st = time.time()
  628. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  629. top_K=top_K)
  630. log_.info({'request_id': request_id,
  631. 'app_type': app_type,
  632. 'mid': mid,
  633. 'uid': uid,
  634. 'operation': 'update_redis_data',
  635. 'executeTime': (time.time() - update_redis_st) * 1000})
  636. return rank_result
  637. if __name__ == '__main__':
  638. videos = [
  639. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  640. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  641. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  642. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  643. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  644. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  645. "pushFrom": "flow_pool", "abCode": 10000},
  646. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  647. "abCode": 10000},
  648. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  649. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  650. "pushFrom": "flow_pool", "abCode": 10000},
  651. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  652. ]
  653. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  654. print(res)