video_rank.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. import random
  2. import numpy
  3. from log import Log
  4. from config import set_config
  5. from video_recall import PoolRecall
  6. from db_helper import RedisHelper
  7. from utils import FilterVideos
  8. log_ = Log()
  9. config_ = set_config()
  10. def video_rank(data, size):
  11. """
  12. 视频分发排序
  13. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  14. :param size: 请求数
  15. :return: rank_result
  16. """
  17. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  18. return None
  19. # 将各路召回的视频按照score从大到小排序
  20. # ROV召回池
  21. rov_recall_rank = sorted(data['rov_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  22. # 流量池
  23. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: (k.get('rovScore'), 0), reverse=True)
  24. # 对各路召回的视频进行去重
  25. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank)
  26. # 从ROV召回池中获取top k
  27. if len(rov_recall_rank) > 0:
  28. rank_result = rov_recall_rank[:config_.K]
  29. rov_recall_rank = rov_recall_rank[config_.K:]
  30. else:
  31. rank_result = flow_recall_rank[:config_.K]
  32. flow_recall_rank = flow_recall_rank[config_.K:]
  33. # 按概率 p 及score排序获取 size - k 个视频
  34. i = 0
  35. while i < size - config_.K:
  36. # 随机生成[0, 1)浮点数
  37. rand = random.random()
  38. if rand < config_.P:
  39. if flow_recall_rank:
  40. rank_result.append(flow_recall_rank[0])
  41. flow_recall_rank.remove(flow_recall_rank[0])
  42. else:
  43. rank_result.append(rov_recall_rank[:size - config_.K - i])
  44. return rank_result
  45. else:
  46. if rov_recall_rank:
  47. rank_result.append(rov_recall_rank[0])
  48. rov_recall_rank.remove(rov_recall_rank[0])
  49. else:
  50. rank_result.append(flow_recall_rank[:size - config_.K - i])
  51. return rank_result
  52. i += 1
  53. return rank_result
  54. def remove_duplicate(rov_recall, flow_recall):
  55. """
  56. 对多路召回的视频去重
  57. 去重原则:
  58. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  59. :param rov_recall: ROV召回池-已排序
  60. :param flow_recall: 流量池-已排序
  61. :return:
  62. """
  63. flow_recall_remove = []
  64. flow_recall_video_ids = [item[0] for item in flow_recall]
  65. # rov_recall topK
  66. for item in rov_recall[:config_.K]:
  67. if item[0] in flow_recall_video_ids:
  68. flow_recall_remove.append(item[0])
  69. # other
  70. for item in rov_recall[config_.K:]:
  71. if item[0] in flow_recall_video_ids:
  72. rov_recall.remove(item)
  73. # flow recall remove
  74. for item in flow_recall:
  75. if item[0] in flow_recall_remove:
  76. flow_recall.remove(item)
  77. return rov_recall, flow_recall
  78. def bottom_strategy(size, app_type, ab_code, mid='', uid=''):
  79. """
  80. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  81. :param size: 需要获取的视频数
  82. :param app_type: 产品标识 type-int
  83. :param ab_code: abCode
  84. :param mid:
  85. :param uid:
  86. :return:
  87. """
  88. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  89. key_name = pool_recall.get_pool_redis_key(pool_type='rov')
  90. redis_helper = RedisHelper()
  91. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  92. if not data:
  93. log_.info('bottom strategy no data!')
  94. return []
  95. # 状态过滤
  96. filter_videos = FilterVideos(app_type=app_type, mid=mid, uid=uid, video_ids=data)
  97. filtered_data = filter_videos.filter_video_status(video_ids=data)
  98. random_data = numpy.random.choice(filtered_data, size, False)
  99. bottom_data = [{'videoId': item, 'pushFrom': 'bottom_strategy', 'abCode': ab_code} for item in random_data]
  100. return bottom_data