video_rank.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. import json
  2. import random
  3. import numpy
  4. from log import Log
  5. from config import set_config
  6. from video_recall import PoolRecall
  7. from db_helper import RedisHelper
  8. from utils import FilterVideos, send_msg_to_feishu
  9. log_ = Log()
  10. config_ = set_config()
  11. def video_rank(data, size, top_K, flow_pool_P):
  12. """
  13. 视频分发排序
  14. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  15. :param size: 请求数
  16. :param top_K: 保证topK为召回池视频 type-int
  17. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  18. :return: rank_result
  19. """
  20. if not data['rov_pool_recall'] and not data['flow_pool_recall']:
  21. return []
  22. # 将各路召回的视频按照score从大到小排序
  23. # 最惊奇相关推荐相似视频
  24. # relevant_recall = [item for item in data['rov_pool_recall']
  25. # if item.get('pushFrom') == config_.PUSH_FROM['top_video_relevant_appType_19']]
  26. # relevant_recall_rank = sorted(relevant_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  27. # 最惊奇完整影视视频
  28. # whole_movies_recall = [item for item in data['rov_pool_recall']
  29. # if item.get('pushFrom') == config_.PUSH_FROM['whole_movies']]
  30. # whole_movies_recall_rank = sorted(whole_movies_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  31. # 最惊奇影视解说视频
  32. # talk_videos_recall = [item for item in data['rov_pool_recall']
  33. # if item.get('pushFrom') == config_.PUSH_FROM['talk_videos']]
  34. # talk_videos_recall_rank = sorted(talk_videos_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  35. # 小时级更新数据
  36. # h_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_h']]
  37. # h_recall_rank = sorted(h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  38. # 相对30天天级规则更新数据
  39. day_30_recall = [item for item in data['rov_pool_recall']
  40. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_30day']]
  41. day_30_recall_rank = sorted(day_30_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  42. # 地域分组小时级规则更新数据
  43. region_h_recall = [item for item in data['rov_pool_recall']
  44. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_h']]
  45. region_h_recall_rank = sorted(region_h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  46. # 地域分组小时级更新24h规则更新数据
  47. region_24h_recall = [item for item in data['rov_pool_recall']
  48. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_24h']]
  49. region_24h_recall_rank = sorted(region_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  50. # 地域分组天级规则更新数据
  51. # region_day_recall = [item for item in data['rov_pool_recall']
  52. # if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_region_day']]
  53. # region_day_recall_rank = sorted(region_day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  54. # 相对24h规则更新数据
  55. rule_24h_recall = [item for item in data['rov_pool_recall']
  56. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h']]
  57. rule_24h_recall_rank = sorted(rule_24h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  58. # 相对24h规则筛选后剩余更新数据
  59. rule_24h_dup_recall = [item for item in data['rov_pool_recall']
  60. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_24h_dup']]
  61. rule_24h_dup_recall_rank = sorted(rule_24h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  62. # 相对48h规则更新数据
  63. rule_48h_recall = [item for item in data['rov_pool_recall']
  64. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h']]
  65. rule_48h_recall_rank = sorted(rule_48h_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  66. # 相对48h规则筛选后剩余更新数据
  67. rule_48h_dup_recall = [item for item in data['rov_pool_recall']
  68. if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_48h_dup']]
  69. rule_48h_dup_recall_rank = sorted(rule_48h_dup_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  70. # 天级规则更新数据
  71. # day_recall = [item for item in data['rov_pool_recall'] if item.get('pushFrom') == config_.PUSH_FROM['rov_recall_day']]
  72. # day_recall_rank = sorted(day_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  73. # ROV召回池
  74. # rov_initial_recall = [
  75. # item for item in data['rov_pool_recall']
  76. # if item.get('pushFrom') not in
  77. # [config_.PUSH_FROM['top_video_relevant_appType_19'],
  78. # config_.PUSH_FROM['rov_recall_h'],
  79. # config_.PUSH_FROM['rov_recall_region_h'],
  80. # config_.PUSH_FROM['rov_recall_region_24h'],
  81. # config_.PUSH_FROM['rov_recall_region_day'],
  82. # config_.PUSH_FROM['rov_recall_24h'],
  83. # config_.PUSH_FROM['rov_recall_24h_dup'],
  84. # config_.PUSH_FROM['rov_recall_48h'],
  85. # config_.PUSH_FROM['rov_recall_48h_dup'],
  86. # config_.PUSH_FROM['rov_recall_day'],
  87. # config_.PUSH_FROM['whole_movies'],
  88. # config_.PUSH_FROM['talk_videos']]
  89. # ]
  90. # rov_initial_recall_rank = sorted(rov_initial_recall, key=lambda k: k.get('rovScore', 0), reverse=True)
  91. # rov_recall_rank = whole_movies_recall_rank + talk_videos_recall_rank + h_recall_rank + \
  92. # day_30_recall_rank + region_h_recall_rank + region_24h_recall_rank + \
  93. # region_day_recall_rank + rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  94. # rule_48h_recall_rank + rule_48h_dup_recall_rank + \
  95. # day_recall_rank + rov_initial_recall_rank
  96. rov_recall_rank = day_30_recall_rank + \
  97. region_h_recall_rank + region_24h_recall_rank + \
  98. rule_24h_recall_rank + rule_24h_dup_recall_rank + \
  99. rule_48h_recall_rank + rule_48h_dup_recall_rank
  100. # 流量池
  101. flow_recall_rank = sorted(data['flow_pool_recall'], key=lambda k: k.get('rovScore', 0), reverse=True)
  102. # 对各路召回的视频进行去重
  103. rov_recall_rank, flow_recall_rank = remove_duplicate(rov_recall=rov_recall_rank, flow_recall=flow_recall_rank,
  104. top_K=top_K)
  105. # log_.info('remove_duplicate finished! rov_recall_rank = {}, flow_recall_rank = {}'.format(
  106. # rov_recall_rank, flow_recall_rank))
  107. # rank_result = relevant_recall_rank
  108. rank_result = []
  109. # 从ROV召回池中获取top k
  110. if len(rov_recall_rank) > 0:
  111. rank_result.extend(rov_recall_rank[:top_K])
  112. rov_recall_rank = rov_recall_rank[top_K:]
  113. else:
  114. rank_result.extend(flow_recall_rank[:top_K])
  115. flow_recall_rank = flow_recall_rank[top_K:]
  116. # 按概率 p 及score排序获取 size - k 个视频
  117. i = 0
  118. while i < size - top_K:
  119. # 随机生成[0, 1)浮点数
  120. rand = random.random()
  121. # log_.info('rand: {}'.format(rand))
  122. if rand < flow_pool_P:
  123. if flow_recall_rank:
  124. rank_result.append(flow_recall_rank[0])
  125. flow_recall_rank.remove(flow_recall_rank[0])
  126. else:
  127. rank_result.extend(rov_recall_rank[:size - top_K - i])
  128. return rank_result[:size]
  129. else:
  130. if rov_recall_rank:
  131. rank_result.append(rov_recall_rank[0])
  132. rov_recall_rank.remove(rov_recall_rank[0])
  133. else:
  134. rank_result.extend(flow_recall_rank[:size - top_K - i])
  135. return rank_result[:size]
  136. i += 1
  137. return rank_result[:size]
  138. def video_new_rank(videoIds, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  139. """
  140. 视频分发排序
  141. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  142. :param size: 请求数
  143. :param top_K: 保证topK为召回池视频 type-int
  144. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  145. :return: rank_result
  146. """
  147. if not videoIds or len(videoIds)==0:
  148. return []
  149. redisObj = RedisHelper()
  150. video_scores = redisObj.get_batch_key(videoIds)
  151. video_items = []
  152. for i in range(len(video_scores)):
  153. try:
  154. video_score_str = json.load(video_scores[i])
  155. video_items.append((videoIds[i], video_score_str[0]))
  156. except Exception:
  157. video_items.append((videoIds[i], 0.0))
  158. sort_items = sorted(video_items, key=lambda k: k[1], reverse=True)
  159. rov_recall_rank = sort_items
  160. fast_flow_recall_rank = []
  161. flow_recall_rank = []
  162. for item in sort_items:
  163. if item[0] in fast_flow_set:
  164. fast_flow_recall_rank.append(item)
  165. elif item[0] in flow_set:
  166. flow_recall_rank.append(item)
  167. # all flow result
  168. all_flow_recall_rank = fast_flow_recall_rank+flow_recall_rank
  169. rank_result = []
  170. rank_set = set('')
  171. # 从ROV召回池中获取top k
  172. if len(rov_recall_rank) > 0:
  173. rank_result.extend(rov_recall_rank[:top_K])
  174. rov_recall_rank = rov_recall_rank[top_K:]
  175. else:
  176. rank_result.extend(all_flow_recall_rank[:top_K])
  177. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  178. for rank_item in rank_result:
  179. rank_set.add(rank_item[0])
  180. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  181. i = 0
  182. while i < size - top_K:
  183. # 随机生成[0, 1)浮点数
  184. rand = random.random()
  185. # log_.info('rand: {}'.format(rand))
  186. if rand < flow_pool_P:
  187. for flow_item in all_flow_recall_rank:
  188. if flow_item[0] in rank_set:
  189. continue
  190. else:
  191. rank_result.append(flow_item)
  192. rank_set.add(flow_item[0])
  193. else:
  194. for recall_item in rov_recall_rank:
  195. if recall_item[0] in rank_set:
  196. continue
  197. else:
  198. rank_result.append(recall_item)
  199. rank_set.add(recall_item[0])
  200. i += 1
  201. return rank_result[:size]
  202. def refactor_video_rank(rov_recall_rank, fast_flow_set, flow_set, size, top_K, flow_pool_P):
  203. """
  204. 视频分发排序
  205. :param data: 各路召回的视频 type-dict {'rov_pool_recall': [], 'flow_pool_recall': []}
  206. :param size: 请求数
  207. :param top_K: 保证topK为召回池视频 type-int
  208. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  209. :return: rank_result
  210. """
  211. if not rov_recall_rank or len(rov_recall_rank) == 0:
  212. return []
  213. fast_flow_recall_rank = []
  214. flow_recall_rank = []
  215. for item in rov_recall_rank:
  216. if item[0] in fast_flow_set:
  217. fast_flow_recall_rank.append(item)
  218. elif item[0] in flow_set:
  219. flow_recall_rank.append(item)
  220. # all flow result
  221. all_flow_recall_rank = fast_flow_recall_rank + flow_recall_rank
  222. rank_result = []
  223. rank_set = set('')
  224. # 从ROV召回池中获取top k
  225. if len(rov_recall_rank) > 0:
  226. rank_result.extend(rov_recall_rank[:top_K])
  227. rov_recall_rank = rov_recall_rank[top_K:]
  228. else:
  229. rank_result.extend(all_flow_recall_rank[:top_K])
  230. all_flow_recall_rank = all_flow_recall_rank[top_K:]
  231. #已存放了多少VID
  232. for rank_item in rank_result:
  233. rank_set.add(rank_item.get('videoId', 0))
  234. # 按概率 p 及score排序获取 size - k 个视频, 第4个位置按概率取流量池
  235. i = 0
  236. while i < size - top_K:
  237. # 随机生成[0, 1)浮点数
  238. rand = random.random()
  239. # log_.info('rand: {}'.format(rand))
  240. if rand < flow_pool_P:
  241. for flow_item in all_flow_recall_rank:
  242. flow_vid = flow_item.get('videoId', 0)
  243. if flow_vid in rank_set:
  244. continue
  245. else:
  246. rank_result.append(flow_item)
  247. rank_set.add(flow_vid)
  248. else:
  249. for recall_item in rov_recall_rank:
  250. flow_vid = recall_item.get('videoId', 0)
  251. if flow_vid in rank_set:
  252. continue
  253. else:
  254. rank_result.append(recall_item)
  255. rank_set.add(flow_vid)
  256. i += 1
  257. return rank_result[:size]
  258. def remove_duplicate(rov_recall, flow_recall, top_K):
  259. """
  260. 对多路召回的视频去重
  261. 去重原则:
  262. 如果视频在ROV召回池topK,则保留ROV召回池,否则保留流量池
  263. :param rov_recall: ROV召回池-已排序
  264. :param flow_recall: 流量池-已排序
  265. :param top_K: 保证topK为召回池视频 type-int
  266. :return:
  267. """
  268. flow_recall_result = []
  269. rov_recall_remove = []
  270. flow_recall_video_ids = [item['videoId'] for item in flow_recall]
  271. # rov_recall topK
  272. for item in rov_recall[:top_K]:
  273. if item['videoId'] in flow_recall_video_ids:
  274. flow_recall_video_ids.remove(item['videoId'])
  275. # other
  276. for item in rov_recall[top_K:]:
  277. if item['videoId'] in flow_recall_video_ids:
  278. rov_recall_remove.append(item)
  279. # rov recall remove
  280. for item in rov_recall_remove:
  281. rov_recall.remove(item)
  282. # flow recall remove
  283. for item in flow_recall:
  284. if item['videoId'] in flow_recall_video_ids:
  285. flow_recall_result.append(item)
  286. return rov_recall, flow_recall_result
  287. def bottom_strategy(request_id, size, app_type, ab_code, params):
  288. """
  289. 兜底策略: 从ROV召回池中获取top1000,进行状态过滤后的视频
  290. :param request_id: request_id
  291. :param size: 需要获取的视频数
  292. :param app_type: 产品标识 type-int
  293. :param ab_code: abCode
  294. :param params:
  295. :return:
  296. """
  297. pool_recall = PoolRecall(request_id=request_id, app_type=app_type, ab_code=ab_code)
  298. key_name, _ = pool_recall.get_pool_redis_key(pool_type='rov')
  299. redis_helper = RedisHelper(params=params)
  300. data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=1000)
  301. if not data:
  302. log_.info('{} —— ROV推荐进入了二次兜底, data = {}'.format(config_.ENV_TEXT, data))
  303. send_msg_to_feishu('{} —— ROV推荐进入了二次兜底,请查看是否有数据更新失败问题。'.format(config_.ENV_TEXT))
  304. # 二次兜底
  305. bottom_data = bottom_strategy_last(size=size, app_type=app_type, ab_code=ab_code, params=params)
  306. return bottom_data
  307. # 视频状态过滤采用离线定时过滤方案
  308. # 状态过滤
  309. # filter_videos = FilterVideos(app_type=app_type, video_ids=data)
  310. # filtered_data = filter_videos.filter_video_status(video_ids=data)
  311. if len(data) > size:
  312. random_data = numpy.random.choice(data, size, False)
  313. else:
  314. random_data = data
  315. bottom_data = [{'videoId': int(item), 'pushFrom': config_.PUSH_FROM['bottom'], 'abCode': ab_code}
  316. for item in random_data]
  317. return bottom_data
  318. def bottom_strategy_last(size, app_type, ab_code, params):
  319. """
  320. 兜底策略: 从兜底视频中随机获取视频,进行状态过滤后的视频
  321. :param size: 需要获取的视频数
  322. :param app_type: 产品标识 type-int
  323. :param ab_code: abCode
  324. :param params:
  325. :return:
  326. """
  327. redis_helper = RedisHelper(params=params)
  328. bottom_data = redis_helper.get_data_zset_with_index(key_name=config_.BOTTOM_KEY_NAME, start=0, end=-1)
  329. random_data = numpy.random.choice(bottom_data, size * 30, False)
  330. # 视频状态过滤采用离线定时过滤方案
  331. # 状态过滤
  332. # filter_videos = FilterVideos(app_type=app_type, video_ids=random_data)
  333. # filtered_data = filter_videos.filter_video_status(video_ids=random_data)
  334. bottom_data = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom_last'], 'abCode': ab_code}
  335. for video_id in random_data[:size]]
  336. return bottom_data
  337. def bottom_strategy2(size, app_type, mid, uid, ab_code, client_info, params):
  338. """
  339. 兜底策略: 从兜底视频中随机获取视频,进行过滤后的视频
  340. :param size: 需要获取的视频数
  341. :param app_type: 产品标识 type-int
  342. :param mid: mid
  343. :param uid: uid
  344. :param ab_code: abCode
  345. :param client_info: 地域信息
  346. :param params:
  347. :return:
  348. """
  349. # 获取存在城市分组数据的城市编码列表
  350. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  351. # 获取provinceCode
  352. province_code = client_info.get('provinceCode', '-1')
  353. # 获取cityCode
  354. city_code = client_info.get('cityCode', '-1')
  355. if city_code in city_code_list:
  356. # 分城市数据存在时,获取城市分组数据
  357. region_code = city_code
  358. else:
  359. region_code = province_code
  360. if region_code == '':
  361. region_code = '-1'
  362. redis_helper = RedisHelper(params=params)
  363. bottom_data = redis_helper.get_data_from_set(key_name=config_.BOTTOM2_KEY_NAME)
  364. bottom_result = []
  365. if bottom_data is None:
  366. return bottom_result
  367. if len(bottom_data) > 0:
  368. try:
  369. random_data = numpy.random.choice(bottom_data, size * 5, False)
  370. except Exception as e:
  371. random_data = bottom_data
  372. video_ids = [int(item) for item in random_data]
  373. # 过滤
  374. filter_ = FilterVideos(request_id=params.request_id, app_type=app_type, mid=mid, uid=uid, video_ids=video_ids)
  375. filtered_data = filter_.filter_videos(pool_type='flow', region_code=region_code)
  376. if filtered_data:
  377. bottom_result = [{'videoId': int(video_id), 'pushFrom': config_.PUSH_FROM['bottom2'], 'abCode': ab_code}
  378. for video_id in filtered_data[:size]]
  379. return bottom_result
  380. def video_rank_by_w_h_rate(videos):
  381. """
  382. 视频宽高比实验(每组的前两个视频调整为横屏视频),根据视频宽高比信息对视频进行重排
  383. :param videos:
  384. :return:
  385. """
  386. redis_helper = RedisHelper()
  387. # ##### 判断前两个视频是否是置顶视频 或者 流量池视频
  388. top_2_push_from_flag = [False, False]
  389. for i, video in enumerate(videos[:2]):
  390. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  391. top_2_push_from_flag[i] = True
  392. if top_2_push_from_flag[0] and top_2_push_from_flag[1]:
  393. return videos
  394. # ##### 判断前两个视频是否为横屏
  395. top_2_w_h_rate_flag = [False, False]
  396. for i, video in enumerate(videos[:2]):
  397. if video['pushFrom'] in [config_.PUSH_FROM['top'], config_.PUSH_FROM['flow_recall']]:
  398. # 视频来源为置顶 或 流量池时,不做判断
  399. top_2_w_h_rate_flag[i] = True
  400. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  401. # 视频来源为 rov召回池 或 一层兜底时,判断是否是横屏
  402. w_h_rate = redis_helper.get_score_with_value(
  403. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  404. if w_h_rate is not None:
  405. top_2_w_h_rate_flag[i] = True
  406. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  407. # 视频来源为 二层兜底时,判断是否是横屏
  408. w_h_rate = redis_helper.get_score_with_value(
  409. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  410. if w_h_rate is not None:
  411. top_2_w_h_rate_flag[i] = True
  412. if top_2_w_h_rate_flag[0] and top_2_w_h_rate_flag[1]:
  413. return videos
  414. # ##### 前两个视频中有不符合前面两者条件的,对视频进行位置调整
  415. # 记录横屏视频位置
  416. horizontal_video_index = []
  417. # 记录流量池视频位置
  418. flow_video_index = []
  419. # 记录置顶视频位置
  420. top_video_index = []
  421. for i, video in enumerate(videos):
  422. # 视频来源为置顶
  423. if video['pushFrom'] == config_.PUSH_FROM['top']:
  424. top_video_index.append(i)
  425. # 视频来源为流量池
  426. elif video['pushFrom'] == config_.PUSH_FROM['flow_recall']:
  427. flow_video_index.append(i)
  428. # 视频来源为rov召回池 或 一层兜底
  429. elif video['pushFrom'] in [config_.PUSH_FROM['rov_recall'], config_.PUSH_FROM['bottom']]:
  430. w_h_rate = redis_helper.get_score_with_value(
  431. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['rov_recall'], value=video['videoId'])
  432. if w_h_rate is not None:
  433. horizontal_video_index.append(i)
  434. else:
  435. continue
  436. # 视频来源为 二层兜底
  437. elif video['pushFrom'] == config_.PUSH_FROM['bottom_last']:
  438. w_h_rate = redis_helper.get_score_with_value(
  439. key_name=config_.W_H_RATE_UP_1_VIDEO_LIST_KEY_NAME['bottom_last'], value=video['videoId'])
  440. if w_h_rate is not None:
  441. horizontal_video_index.append(i)
  442. else:
  443. continue
  444. # 重新排序
  445. top2_index = []
  446. for i in range(2):
  447. if i in top_video_index:
  448. top2_index.append(i)
  449. elif i in flow_video_index:
  450. top2_index.append(i)
  451. flow_video_index.remove(i)
  452. elif i in horizontal_video_index:
  453. top2_index.append(i)
  454. horizontal_video_index.remove(i)
  455. elif len(horizontal_video_index) > 0:
  456. # 调整横屏视频到第一位
  457. top2_index.append(horizontal_video_index[0])
  458. # 从横屏位置记录中移除
  459. horizontal_video_index.pop(0)
  460. elif i == 0:
  461. return videos
  462. # 重排
  463. flow_result = [videos[i] for i in flow_video_index]
  464. other_result = [videos[i] for i in range(len(videos)) if i not in top2_index and i not in flow_video_index]
  465. top2_result = []
  466. for i, j in enumerate(top2_index):
  467. item = videos[j]
  468. if i != j:
  469. # 修改abCode
  470. item['abCode'] = config_.AB_CODE['w_h_rate']
  471. top2_result.append(item)
  472. new_rank_result = top2_result
  473. for i in range(len(top2_index), len(videos)):
  474. if i in flow_video_index:
  475. new_rank_result.append(flow_result[0])
  476. flow_result.pop(0)
  477. else:
  478. new_rank_result.append(other_result[0])
  479. other_result.pop(0)
  480. return new_rank_result
  481. def video_rank_with_old_video(rank_result, old_video_recall, size, top_K, old_video_index=2):
  482. """
  483. 视频分发排序 - 包含老视频, 老视频插入固定位置
  484. :param rank_result: 排序后的结果
  485. :param size: 请求数
  486. :param old_video_index: 老视频插入的位置索引,默认为2
  487. :return: new_rank_result
  488. """
  489. if not old_video_recall:
  490. return rank_result
  491. if not rank_result:
  492. return old_video_recall[:size]
  493. # 视频去重
  494. rank_video_ids = [item['videoId'] for item in rank_result]
  495. old_video_remove = []
  496. for old_video in old_video_recall:
  497. if old_video['videoId'] in rank_video_ids:
  498. old_video_remove.append(old_video)
  499. for item in old_video_remove:
  500. old_video_recall.remove(item)
  501. if not old_video_recall:
  502. return rank_result
  503. # 插入老视频
  504. # 随机获取一个视频
  505. ind = random.randint(0, len(old_video_recall) - 1)
  506. old_video = old_video_recall[ind]
  507. # 插入
  508. if len(rank_result) < top_K:
  509. new_rank_result = rank_result + [old_video]
  510. else:
  511. new_rank_result = rank_result[:old_video_index] + [old_video] + rank_result[old_video_index:]
  512. if len(new_rank_result) > size:
  513. # 判断后两位视频来源
  514. push_from_1 = new_rank_result[-1]['pushFrom']
  515. push_from_2 = new_rank_result[-2]['pushFrom']
  516. if push_from_2 == config_.PUSH_FROM['rov_recall'] and push_from_1 == config_.PUSH_FROM['flow_recall']:
  517. new_rank_result = new_rank_result[:-2] + new_rank_result[-1:]
  518. return new_rank_result[:size]
  519. if __name__ == '__main__':
  520. d_test = [{'videoId': 10028734, 'rovScore': 99.977, 'pushFrom': 'recall_pool', 'abCode': 10000},
  521. {'videoId': 1919925, 'rovScore': 99.974, 'pushFrom': 'recall_pool', 'abCode': 10000},
  522. {'videoId': 9968118, 'rovScore': 99.972, 'pushFrom': 'recall_pool', 'abCode': 10000},
  523. {'videoId': 9934863, 'rovScore': 99.971, 'pushFrom': 'recall_pool', 'abCode': 10000},
  524. {'videoId': 10219869, 'flowPool': '1#1#1#1640830818883', 'rovScore': 82.21929728934731, 'pushFrom': 'flow_pool', 'abCode': 10000},
  525. {'videoId': 10212814, 'flowPool': '1#1#1#1640759014984', 'rovScore': 81.26694187726412, 'pushFrom': 'flow_pool', 'abCode': 10000},
  526. {'videoId': 10219437, 'flowPool': '1#1#1#1640827620520', 'rovScore': 81.21634156641908, 'pushFrom': 'flow_pool', 'abCode': 10000},
  527. {'videoId': 1994050, 'rovScore': 99.97, 'pushFrom': 'recall_pool', 'abCode': 10000},
  528. {'videoId': 9894474, 'rovScore': 99.969, 'pushFrom': 'recall_pool', 'abCode': 10000},
  529. {'videoId': 10028081, 'rovScore': 99.966, 'pushFrom': 'recall_pool', 'abCode': 10000}]
  530. res = video_rank_by_w_h_rate(videos=d_test)
  531. for tmp in res:
  532. print(tmp)