recommend.py 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime, timedelta
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_new_rank,video_rank,refactor_video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video, bottom_strategy2
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos, get_user_has30day_return
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(request_id, app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param request_id: request_id
  22. :param app_type: 产品标识 type-int
  23. :param mid: mid
  24. :param uid: uid
  25. :param head_vid: 相关推荐头部视频id type-int
  26. :param videos: 当前相关推荐结果 type-list
  27. :param size: 返回视频个数 type-int
  28. :return: rank_result
  29. """
  30. # 获取头部视频对应的相关性视频
  31. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  32. redis_helper = RedisHelper()
  33. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  34. if relevant_videos is None:
  35. # 该视频没有指定的相关性视频
  36. return videos
  37. relevant_videos = json.loads(relevant_videos)
  38. # 按照指定顺序排序
  39. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  40. # 过滤
  41. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  42. filter_helper = FilterVideos(request_id=request_id, app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  43. filtered_ids = filter_helper.filter_videos()
  44. if filtered_ids is None:
  45. return videos
  46. # 获取生效中的视频
  47. now = int(time.time())
  48. relevant_videos_in_effect = [
  49. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  50. 'abCode': config_.AB_CODE['relevant_video_op']}
  51. for item in relevant_videos_sorted
  52. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  53. ]
  54. if len(relevant_videos_in_effect) == 0:
  55. return videos
  56. # 与现有排序结果 进行合并重排
  57. # 获取现有排序结果中流量池视频 及其位置
  58. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  59. flow_pool_videos = []
  60. other_videos = []
  61. for i, item in enumerate(videos):
  62. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  63. flow_pool_videos.append((i, item))
  64. elif item.get('videoId') not in relevant_ids:
  65. other_videos.append(item)
  66. else:
  67. continue
  68. # 重排,保持流量池视频位置不变
  69. rank_result = relevant_videos_in_effect + other_videos
  70. for i, item in flow_pool_videos:
  71. rank_result.insert(i, item)
  72. return rank_result[:size]
  73. def video_position_recommend(request_id, mid, uid, app_type, videos):
  74. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  75. # algo_type=algo_type, client_info=client_info)
  76. redis_helper = RedisHelper()
  77. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  78. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  79. if pos1_vids is not None:
  80. pos1_vids = ast.literal_eval(pos1_vids)
  81. if pos2_vids is not None:
  82. pos2_vids = ast.literal_eval(pos2_vids)
  83. pos1_vids = [] if pos1_vids is None else pos1_vids
  84. pos2_vids = [] if pos2_vids is None else pos2_vids
  85. pos1_vids = [int(i) for i in pos1_vids]
  86. pos2_vids = [int(i) for i in pos2_vids]
  87. filter_1 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  88. filter_2 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  89. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  90. gevent.joinall(t)
  91. filted_list = [i.get() for i in t]
  92. pos1_vids = filted_list[0]
  93. pos2_vids = filted_list[1]
  94. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  95. if pos1_vids is not None and len(pos1_vids) >0 :
  96. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  97. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  98. if pos2_vids is not None and len(pos2_vids) >0 :
  99. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  100. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  101. return videos[:10]
  102. def positon_duplicate(pos1_vids, pos2_vids, videos):
  103. s = set()
  104. if pos1_vids is not None and len(pos1_vids) >0:
  105. s.add(int(pos1_vids[0]))
  106. if pos2_vids is not None and len(pos2_vids) >0:
  107. s.add(int(pos2_vids[0]))
  108. l = []
  109. for item in videos:
  110. if item['videoId'] in s:
  111. continue
  112. else:
  113. l.append(item)
  114. return l
  115. def video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info,
  116. expire_time=24*3600, ab_code=config_.AB_CODE['initial'], rule_key='', data_key='',
  117. no_op_flag=False, old_video_index=-1, video_id=None, params=None, rule_key_30day=None,
  118. shield_config=None):
  119. """
  120. 首页线上推荐逻辑
  121. :param request_id: request_id
  122. :param mid: mid type-string
  123. :param uid: uid type-string
  124. :param size: 请求视频数量 type-int
  125. :param top_K: 保证topK为召回池视频 type-int
  126. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  127. :param app_type: 产品标识 type-int
  128. :param algo_type: 算法类型 type-string
  129. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  130. :param expire_time: 末位视频记录redis过期时间
  131. :param ab_code: AB实验code
  132. :param video_id: 相关推荐头部视频id
  133. :param params:
  134. :return:
  135. """
  136. result = {}
  137. # ####### 多进程召回
  138. start_recall = time.time()
  139. # log_.info('====== recall')
  140. '''
  141. cores = multiprocessing.cpu_count()
  142. pool = multiprocessing.Pool(processes=cores)
  143. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  144. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  145. pool_list = [
  146. # rov召回池
  147. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  148. # 流量池
  149. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  150. ]
  151. recall_result_list = [p.get() for p in pool_list]
  152. pool.close()
  153. pool.join()
  154. '''
  155. recall_result_list = []
  156. pool_recall = PoolRecall(request_id=request_id,
  157. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  158. client_info=client_info, rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  159. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config, video_id= video_id)
  160. # _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  161. # # 小时级实验
  162. # if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()]:
  163. # t = [gevent.spawn(pool_recall.rule_recall_by_h, size, expire_time),
  164. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  165. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  166. # # 小时级实验
  167. # elif ab_code in [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  168. # t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  169. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  170. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  171. # 地域分组实验
  172. # if ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  173. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  174. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time)]
  175. else:
  176. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  177. gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  178. gevent.spawn(pool_recall.flow_pool_recall, size),
  179. gevent.spawn(pool_recall.get_sim_hot_item_reall)]
  180. # 最惊奇相关推荐实验
  181. # elif ab_code == config_.AB_CODE['top_video_relevant_appType_19']:
  182. # t = [gevent.spawn(pool_recall.relevant_recall_19, video_id, size, expire_time),
  183. # gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  184. # 最惊奇完整影视实验
  185. # elif ab_code == config_.AB_CODE['whole_movies']:
  186. # t = [gevent.spawn(pool_recall.rov_pool_recall_19, size, expire_time)]
  187. # 最惊奇/老好看实验
  188. # elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  189. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  190. # gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  191. # # 天级实验
  192. # elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  193. # t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  194. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  195. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  196. # 老视频实验
  197. # elif ab_code in [config_.AB_CODE['old_video']]:
  198. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  199. # gevent.spawn(pool_recall.flow_pool_recall, size),
  200. # gevent.spawn(pool_recall.old_videos_recall, size)]
  201. # else:
  202. # if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  203. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time)]
  204. # else:
  205. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  206. # gevent.spawn(pool_recall.flow_pool_recall, size, config_.QUICK_FLOW_POOL_ID),
  207. # gevent.spawn(pool_recall.flow_pool_recall, size)]
  208. gevent.joinall(t)
  209. recall_result_list = [i.get() for i in t]
  210. # end_recall = time.time()
  211. # log_.info({
  212. # 'logTimestamp': int(time.time() * 1000),
  213. # 'request_id': request_id,
  214. # 'mid': mid,
  215. # 'uid': uid,
  216. # 'operation': 'recall',
  217. # 'recall_result': recall_result_list,
  218. # 'executeTime': (time.time() - start_recall) * 1000
  219. # })
  220. result['recallResult'] = recall_result_list
  221. result['recallTime'] = (time.time() - start_recall) * 1000
  222. # ####### 排序
  223. start_rank = time.time()
  224. # log_.info('====== rank')
  225. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  226. if ab_code in [
  227. config_.AB_CODE['rov_rank_appType_18_19'],
  228. config_.AB_CODE['rov_rank_appType_19'],
  229. config_.AB_CODE['top_video_relevant_appType_19']
  230. ]:
  231. data = {
  232. 'rov_pool_recall': recall_result_list[0],
  233. 'flow_pool_recall': recall_result_list[1]
  234. }
  235. else:
  236. data = {
  237. 'rov_pool_recall': recall_result_list[0],
  238. 'flow_pool_recall': []
  239. }
  240. else:
  241. if recall_result_list[1]:
  242. redis_helper = RedisHelper()
  243. quick_flow_pool_P = redis_helper.get_data_from_redis(
  244. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  245. )
  246. if quick_flow_pool_P:
  247. flow_pool_P = quick_flow_pool_P
  248. data = {
  249. 'rov_pool_recall': recall_result_list[0],
  250. 'flow_pool_recall': recall_result_list[1]
  251. }
  252. else:
  253. data = {
  254. 'rov_pool_recall': recall_result_list[0],
  255. 'flow_pool_recall': recall_result_list[2]
  256. }
  257. if ab_code=="ab_new_test":
  258. rank_result = video_new_rank(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  259. else:
  260. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  261. # 老视频实验
  262. # if ab_code in [config_.AB_CODE['old_video']]:
  263. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  264. # size=size, top_K=top_K, old_video_index=old_video_index)
  265. # end_rank = time.time()
  266. # log_.info({
  267. # 'logTimestamp': int(time.time() * 1000),
  268. # 'request_id': request_id,
  269. # 'mid': mid,
  270. # 'uid': uid,
  271. # 'operation': 'rank',
  272. # 'rank_result': rank_result,
  273. # 'executeTime': (time.time() - start_rank) * 1000
  274. # })
  275. result['rankResult'] = rank_result
  276. result['rankTime'] = (time.time() - start_rank) * 1000
  277. # if not rank_result:
  278. # # 兜底策略
  279. # # log_.info('====== bottom strategy')
  280. # start_bottom = time.time()
  281. # rank_result = bottom_strategy2(
  282. # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  283. # )
  284. #
  285. # # if ab_code == config_.AB_CODE['region_rank_by_h'].get('abtest_130'):
  286. # # rank_result = bottom_strategy2(
  287. # # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  288. # # )
  289. # # else:
  290. # # rank_result = bottom_strategy(
  291. # # request_id=request_id, size=size, app_type=app_type, ab_code=ab_code, params=params
  292. # # )
  293. #
  294. # # log_.info({
  295. # # 'logTimestamp': int(time.time() * 1000),
  296. # # 'request_id': request_id,
  297. # # 'mid': mid,
  298. # # 'uid': uid,
  299. # # 'operation': 'bottom',
  300. # # 'bottom_result': rank_result,
  301. # # 'executeTime': (time.time() - start_bottom) * 1000
  302. # # })
  303. # result['bottomResult'] = rank_result
  304. # result['bottomTime'] = (time.time() - start_bottom) * 1000
  305. #
  306. # result['rankResult'] = rank_result
  307. return result
  308. # return rank_result, last_rov_recall_key
  309. def new_video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info,
  310. expire_time=24*3600, ab_code=config_.AB_CODE['initial'], rule_key='', data_key='',
  311. no_op_flag=False, old_video_index=-1, video_id=None, params=None, rule_key_30day=None,
  312. shield_config=None):
  313. """
  314. 首页线上推荐逻辑
  315. :param request_id: request_id
  316. :param mid: mid type-string
  317. :param uid: uid type-string
  318. :param size: 请求视频数量 type-int
  319. :param top_K: 保证topK为召回池视频 type-int
  320. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  321. :param app_type: 产品标识 type-int
  322. :param algo_type: 算法类型 type-string
  323. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  324. :param expire_time: 末位视频记录redis过期时间
  325. :param ab_code: AB实验code
  326. :param video_id: 相关推荐头部视频id
  327. :param params:
  328. :return:
  329. """
  330. #1. recall
  331. result = {}
  332. # ####### 多进程召回
  333. start_recall = time.time()
  334. # 1. 根据城市或者省份获取region_code
  335. city_code_list = [code for _, code in config_.CITY_CODE.items()]
  336. # 获取provinceCode
  337. province_code = client_info.get('provinceCode', '-1')
  338. # 获取cityCode
  339. city_code = client_info.get('cityCode', '-1')
  340. if city_code in city_code_list:
  341. # 分城市数据存在时,获取城市分组数据
  342. region_code = city_code
  343. else:
  344. region_code = province_code
  345. if region_code == '':
  346. region_code = '-1'
  347. size =1000
  348. pool_recall = PoolRecall(request_id=request_id,
  349. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  350. client_info=client_info, rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  351. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config, video_id= video_id)
  352. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  353. t = [gevent.spawn(pool_recall.get_region_hour_recall, size, region_code),
  354. gevent.spawn(pool_recall.get_region_day_recall, size, region_code),
  355. gevent.spawn(pool_recall.get_selected_recall, size),
  356. gevent.spawn(pool_recall.get_no_selected_recall, size)
  357. ]
  358. else:
  359. t = [gevent.spawn(pool_recall.get_region_hour_recall, size),
  360. gevent.spawn(pool_recall.get_region_day_recall, size),
  361. gevent.spawn(pool_recall.get_selected_recall, size),
  362. gevent.spawn(pool_recall.get_no_selected_recall, size),
  363. gevent.spawn(pool_recall.get_fast_flow_pool_recall, size),
  364. gevent.spawn(pool_recall.get_flow_pool_recall, size),
  365. gevent.spawn(pool_recall.get_sim_hot_item_reall)]
  366. gevent.joinall(t)
  367. # all recall_result
  368. all_recall_result_list = [i.get() for i in t]
  369. result['recallTime'] = (time.time() - start_recall) * 1000
  370. #2. duplicate
  371. recall_dict = {}
  372. fast_flow_set = set('')
  373. flow_flow_set = set('')
  374. all_flow_set = set('')
  375. region_h_recall = []
  376. region_day_recall = []
  377. select_day_recall = []
  378. no_selected_recall = []
  379. for per_item in all_recall_result_list:
  380. vId = per_item.get("videoId",'0')
  381. if vId=='0':
  382. continue
  383. recall_name = per_item.get("pushFrom",'')
  384. if recall_name=='fast_flow_recall':
  385. fast_flow_set.add(vId)
  386. if recall_name=='flow_recall':
  387. flow_flow_set.add(vId)
  388. #duplicate divide into
  389. if vId not in recall_dict:
  390. if recall_name == config_.PUSH_FROM['rov_recall_region_h']:
  391. region_h_recall.append(per_item)
  392. elif recall_name == config_.PUSH_FROM['rov_recall_region_24h']:
  393. region_day_recall.append(per_item)
  394. elif recall_name == config_.PUSH_FROM['rov_recall_24h']:
  395. select_day_recall.append(per_item)
  396. elif recall_name == config_.PUSH_FROM['rov_recall_24h_dup']:
  397. no_selected_recall.append(per_item)
  398. if vId not in recall_dict:
  399. recall_dict[vId] = recall_name
  400. else:
  401. recall_name = recall_dict[vId] + "," + recall_name
  402. recall_dict[vId] = recall_name
  403. all_flow_set.add(fast_flow_set)
  404. all_flow_set.add(flow_flow_set)
  405. #3. filter video, 先过预曝光
  406. filter_ = FilterVideos(request_id=request_id,
  407. app_type=app_type, mid=mid, uid=uid, video_ids=recall_dict.keys())
  408. #a).expose filter
  409. expose_filterd_videos = filter_.new_filter_video()
  410. if expose_filterd_videos is None:
  411. return
  412. #b). sep_filter
  413. normal_video_list, flow_video_list = filter_.new_flow_video(expose_filterd_videos, all_flow_set, region_code, shield_config)
  414. if len(normal_video_list) and len(flow_video_list)==0:
  415. return
  416. #4. sort: old sort: flow 按概率出
  417. start_rank = time.time()
  418. #quick_flow_pool_P get from redis
  419. redis_helper = RedisHelper()
  420. quick_flow_pool_P = redis_helper.get_data_from_redis(
  421. key_name=f"{config_.QUICK_FLOWPOOL_DISTRIBUTE_RATE_KEY_NAME_PREFIX}{config_.QUICK_FLOW_POOL_ID}"
  422. )
  423. if quick_flow_pool_P:
  424. flow_pool_P = quick_flow_pool_P
  425. all_recall_list = normal_video_list+flow_video_list
  426. rank_result= []
  427. if ab_code=="ab_new_test":
  428. rank_ids = video_new_rank(videoIds=all_recall_list,fast_flow_set=fast_flow_set, flow_set=flow_flow_set,size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  429. for rank_id in rank_ids:
  430. if rank_id in recall_dict:
  431. rank_result.append(recall_dict.get(rank_id))
  432. else:
  433. all_dup_recall_result = region_h_recall+region_day_recall+select_day_recall+no_selected_recall
  434. rank_result = refactor_video_rank(rov_recall_rank=all_dup_recall_result,fast_flow_set=fast_flow_set, flow_set=flow_flow_set, size=size, top_K=top_K, flow_pool_P=float(flow_pool_P))
  435. result['rankResult'] = rank_result
  436. result['rankTime'] = (time.time() - start_rank) * 1000
  437. # if not rank_result:
  438. # # 兜底策略
  439. # # log_.info('====== bottom strategy')
  440. # start_bottom = time.time()
  441. # rank_result = bottom_strategy2(
  442. # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  443. # )
  444. #
  445. # # if ab_code == config_.AB_CODE['region_rank_by_h'].get('abtest_130'):
  446. # # rank_result = bottom_strategy2(
  447. # # size=size, app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info, params=params
  448. # # )
  449. # # else:
  450. # # rank_result = bottom_strategy(
  451. # # request_id=request_id, size=size, app_type=app_type, ab_code=ab_code, params=params
  452. # # )
  453. #
  454. # # log_.info({
  455. # # 'logTimestamp': int(time.time() * 1000),
  456. # # 'request_id': request_id,
  457. # # 'mid': mid,
  458. # # 'uid': uid,
  459. # # 'operation': 'bottom',
  460. # # 'bottom_result': rank_result,
  461. # # 'executeTime': (time.time() - start_bottom) * 1000
  462. # # })
  463. # result['bottomResult'] = rank_result
  464. # result['bottomTime'] = (time.time() - start_bottom) * 1000
  465. #
  466. # result['rankResult'] = rank_result
  467. return result
  468. # return rank_result, last_rov_recall_key
  469. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  470. """
  471. 对排序后的结果 按照AB实验进行对应的分组操作
  472. :param rank_result: 排序后的结果
  473. :param ab_code_list: 此次请求参与的 ab实验组
  474. :param app_type: 产品标识
  475. :param mid: mid
  476. :param uid: uid
  477. :param kwargs: 其他参数
  478. :return:
  479. """
  480. # ####### 视频宽高比AB实验
  481. # 对内容精选进行 视频宽高比分发实验
  482. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  483. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  484. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  485. # app_type, mid, uid, rank_result))
  486. # 按position位置排序
  487. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  488. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  489. print('===========================')
  490. print(rank_result)
  491. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  492. app_type, mid, uid, rank_result))
  493. # 相关推荐强插
  494. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  495. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  496. # head_vid = kwargs['head_vid']
  497. # size = kwargs['size']
  498. # rank_result = relevant_video_top_recommend(
  499. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  500. # )
  501. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  502. # app_type, mid, uid, head_vid, rank_result))
  503. return rank_result
  504. def update_redis_data(result, app_type, mid, top_K, expire_time=24*3600):
  505. """
  506. 根据最终的排序结果更新相关redis数据
  507. :param result: 排序结果
  508. :param app_type: 产品标识
  509. :param mid: mid
  510. :param top_K: 保证topK为召回池视频 type-int
  511. :param expire_time: 末位视频记录redis过期时间
  512. :return: None
  513. """
  514. # ####### redis数据刷新
  515. try:
  516. redis_helper = RedisHelper()
  517. # log_.info('====== update redis')
  518. if mid and mid != 'null':
  519. # mid为空时,不做预曝光和定位数据更新
  520. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  521. preview_key_name = f"{config_.PREVIEW_KEY_PREFIX}{app_type}:{mid}"
  522. preview_video_ids = [int(item['videoId']) for item in result]
  523. if preview_video_ids:
  524. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  525. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  526. # log_.info('preview redis update success!')
  527. # # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  528. # rov_recall_video = [item['videoId'] for item in result[:top_K]
  529. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  530. # if len(rov_recall_video) > 0:
  531. # if app_type == config_.APP_TYPE['APP']:
  532. # key_name = config_.UPDATE_ROV_KEY_NAME_APP
  533. # else:
  534. # key_name = config_.UPDATE_ROV_KEY_NAME
  535. # if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  536. # redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  537. # expire_time=expire_time)
  538. # log_.info('last video redis update success!')
  539. # 将此次获取的 地域分组小时级数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  540. rov_recall_h_video = [item['videoId'] for item in result[:top_K]
  541. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_region_h']]
  542. if len(rov_recall_h_video) > 0:
  543. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_H_PREFIX}{app_type}:{mid}'
  544. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_h_video[-1],
  545. expire_time=expire_time)
  546. # 将此次获取的 地域分组相对24h数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  547. rov_recall_24h_dup1_video = [item['videoId'] for item in result[:top_K]
  548. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_region_24h']]
  549. if len(rov_recall_24h_dup1_video) > 0:
  550. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP1_24H_PREFIX}{app_type}:{mid}'
  551. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup1_video[-1],
  552. expire_time=expire_time)
  553. # 将此次获取的 相对24h筛选数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  554. rov_recall_24h_dup2_video = [item['videoId'] for item in result[:top_K]
  555. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_24h']]
  556. if len(rov_recall_24h_dup2_video) > 0:
  557. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP2_24H_PREFIX}{app_type}:{mid}'
  558. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup2_video[-1],
  559. expire_time=expire_time)
  560. # 将此次获取的 相对24h筛选后剩余数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  561. rov_recall_24h_dup3_video = [item['videoId'] for item in result[:top_K]
  562. if item['pushFrom'] == config_.PUSH_FROM['rov_recall_24h_dup']]
  563. if len(rov_recall_24h_dup3_video) > 0:
  564. last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP3_24H_PREFIX}{app_type}:{mid}'
  565. redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_24h_dup3_video[-1],
  566. expire_time=expire_time)
  567. # # 将此次获取的 相对48h筛选数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  568. # rov_recall_48h_dup2_video = [item['videoId'] for item in result[:top_K]
  569. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall_48h']]
  570. # if len(rov_recall_48h_dup2_video) > 0:
  571. # last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP2_48H_PREFIX}{app_type}:{mid}'
  572. # redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_48h_dup2_video[-1],
  573. # expire_time=expire_time)
  574. #
  575. # # 将此次获取的 相对48h筛选后剩余数据列表 中的视频id同步刷新到redis中,方便下次快速定位到召回位置
  576. # rov_recall_48h_dup3_video = [item['videoId'] for item in result[:top_K]
  577. # if item['pushFrom'] == config_.PUSH_FROM['rov_recall_48h_dup']]
  578. # if len(rov_recall_48h_dup3_video) > 0:
  579. # last_video_key = f'{config_.LAST_VIDEO_FROM_REGION_DUP3_48H_PREFIX}{app_type}:{mid}'
  580. # redis_helper.set_data_to_redis(key_name=last_video_key, value=rov_recall_48h_dup3_video[-1],
  581. # expire_time=expire_time)
  582. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  583. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  584. # 获取本地分发数-1策略开关
  585. switch = redis_helper.get_data_from_redis(key_name=config_.IN_FLOW_POOL_COUNT_SWITCH_KEY_NAME)
  586. if switch is not None:
  587. if int(switch) == 1:
  588. flow_recall_video = [item for item in result if item.get('flowPool', None) is not None]
  589. else:
  590. flow_recall_video = [item for item in result if
  591. item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  592. else:
  593. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  594. if flow_recall_video:
  595. update_local_distribute_count(flow_recall_video)
  596. # log_.info('update local distribute count success!')
  597. # 限流视频分发数记录
  598. if app_type == config_.APP_TYPE['APP']:
  599. # APP 不计入
  600. return
  601. limit_video_id_list = redis_helper.get_data_from_set(
  602. key_name=f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_SET}{datetime.today().strftime('%Y%m%d')}"
  603. )
  604. if limit_video_id_list is not None:
  605. limit_video_id_list = [int(item) for item in limit_video_id_list]
  606. for item in result:
  607. video_id = item['videoId']
  608. if video_id in limit_video_id_list:
  609. key_name = f"{config_.KEY_NAME_PREFIX_LIMIT_VIDEO_DISTRIBUTE_COUNT}{video_id}"
  610. redis_helper.setnx_key(key_name=key_name, value=0, expire_time=24*2600)
  611. redis_helper.incr_key(key_name=key_name, amount=1, expire_time=24*3600)
  612. except Exception as e:
  613. log_.error("update redis data fail!")
  614. log_.error(traceback.format_exc())
  615. def update_local_distribute_count(videos):
  616. """
  617. 更新本地分发数
  618. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  619. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  620. :return:
  621. """
  622. try:
  623. redis_helper = RedisHelper()
  624. for item in videos:
  625. video_id, flow_pool = item['videoId'], item['flowPool']
  626. key_name = f"{config_.LOCAL_DISTRIBUTE_COUNT_PREFIX}{video_id}:{flow_pool}"
  627. # 本地记录的分发数 - 1
  628. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=15 * 60)
  629. # 对该视频做分发数检查
  630. cur_count = redis_helper.get_data_from_redis(key_name=key_name)
  631. # 无记录
  632. if cur_count is None:
  633. continue
  634. # 本地分发数 cur_count <= 0,从所有的流量召回池移除,删除本地分发记录key
  635. if int(cur_count) <= 0:
  636. add_remove_log = False
  637. redis_helper.del_keys(key_name=key_name)
  638. for app_name in config_.APP_TYPE:
  639. app_type = config_.APP_TYPE.get(app_name)
  640. flow_pool_key_list = [
  641. f"{config_.FLOWPOOL_KEY_NAME_PREFIX}{app_type}",
  642. f"{config_.QUICK_FLOWPOOL_KEY_NAME_PREFIX}{app_type}:{config_.QUICK_FLOW_POOL_ID}"
  643. ]
  644. for key in flow_pool_key_list:
  645. remove_res = redis_helper.remove_value_from_zset(key_name=key, value=f"{video_id}-{flow_pool}")
  646. if remove_res > 0:
  647. add_remove_log = True
  648. video_flow_pool_key_list = [
  649. f"{config_.QUICK_FLOWPOOL_VIDEO_INFO_KEY_NAME_PREFIX}{app_type}:{config_.QUICK_FLOW_POOL_ID}:{video_id}",
  650. f"{config_.FLOWPOOL_VIDEO_INFO_KEY_NAME_PREFIX}{app_type}:{video_id}"
  651. ]
  652. for key in video_flow_pool_key_list:
  653. redis_helper.remove_value_from_set(key_name=key, values=(flow_pool, ))
  654. if add_remove_log is True:
  655. log_.info({'tag': 'remove video_id from flow_pool', 'video_id': video_id, 'flow_pool': flow_pool})
  656. # if redis_helper.key_exists(key_name=key_name):
  657. # # 该视频本地有记录,本地记录的分发数 - 1
  658. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  659. # else:
  660. # # 该视频本地无记录,接口获取的分发数 - 1
  661. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  662. except Exception as e:
  663. log_.error('update_local_distribute_count error...')
  664. log_.error(traceback.format_exc())
  665. def get_religion_class_with_mid(mid, religion_class_name):
  666. """
  667. 判断用户是否属于对应的宗教类型
  668. :param mid: mid type-string
  669. :param religion_class_name: 宗教类型, type-string, (catholicism-天主教, christianity-基督教)
  670. :return: religion_class_flag, type-int, (0-否,1-是), 默认: 0
  671. """
  672. religion_class_flag = 0
  673. now_date = datetime.today()
  674. redis_helper = RedisHelper()
  675. if mid:
  676. hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  677. hash_tag = hash_mid[-1:]
  678. key_name_prefix = config_.KEY_NAME_PREFIX_RELIGION_USER.get(religion_class_name, None)
  679. if key_name_prefix is None:
  680. return religion_class_flag
  681. key_name = f"{key_name_prefix}{hash_tag}:{datetime.strftime(now_date, '%Y%m%d')}"
  682. if not redis_helper.key_exists(key_name=key_name):
  683. key_name = f"{key_name_prefix}{hash_tag}:{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}"
  684. if redis_helper.data_exists_with_set(key_name=key_name, value=mid):
  685. religion_class_flag = 1
  686. return religion_class_flag
  687. def get_recommend_params(recommend_type, ab_exp_info, ab_info_data, mid, app_type, page_type=0):
  688. """
  689. 根据实验分组给定对应的推荐参数
  690. :param recommend_type: 首页推荐和相关推荐区分参数(0-首页推荐,1-相关推荐)
  691. :param ab_exp_info: AB实验组参数
  692. :param ab_info_data: app实验组参数
  693. :param mid: mid
  694. :param app_type: app_type, type-int
  695. :param page_type: 页面区分参数,默认:0(首页)
  696. :return:
  697. """
  698. top_K = config_.K
  699. flow_pool_P = config_.P
  700. # 不获取人工干预数据标记
  701. no_op_flag = True
  702. expire_time = 3600
  703. old_video_index = -1
  704. # 获取对应的默认配置
  705. ab_initial_config = config_.INITIAL_CONFIG.get(app_type, None)
  706. if ab_initial_config is None:
  707. ab_initial_config = config_.INITIAL_CONFIG.get('other')
  708. param = config_.AB_EXP_CODE[ab_initial_config]
  709. ab_code = param.get('ab_code')
  710. rule_key = param.get('rule_key')
  711. data_key = param.get('data_key')
  712. rule_key_30day = param.get('30day_rule_key')
  713. shield_config = config_.SHIELD_CONFIG
  714. # 默认使用 095 实验的配置
  715. # ab_code = config_.AB_EXP_CODE['095'].get('ab_code')
  716. # rule_key = config_.AB_EXP_CODE['095'].get('rule_key')
  717. # data_key = config_.AB_EXP_CODE['095'].get('data_key')
  718. # rule_key_30day = None
  719. # 获取用户近30天是否有回流
  720. # user_30day_return_result = get_user_has30day_return(mid=mid)
  721. # 获取实验配置
  722. if ab_exp_info:
  723. ab_exp_code_list = []
  724. config_value_dict = {}
  725. for _, item in ab_exp_info.items():
  726. if not item:
  727. continue
  728. for ab_item in item:
  729. ab_exp_code = ab_item.get('abExpCode', None)
  730. if not ab_exp_code:
  731. continue
  732. ab_exp_code_list.append(str(ab_exp_code))
  733. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  734. # 流量池视频分发概率实验
  735. if '211' in ab_exp_code_list:
  736. flow_pool_P = 0.9
  737. elif '221' in ab_exp_code_list:
  738. flow_pool_P = 0.7
  739. elif '299' in ab_exp_code_list:
  740. flow_pool_P = 0.5
  741. elif '300' in ab_exp_code_list:
  742. flow_pool_P = 0.4
  743. elif '301' in ab_exp_code_list:
  744. flow_pool_P = 0.6
  745. # if '136' in ab_exp_code_list:
  746. # # 无回流 - 消费人群
  747. # if user_30day_return_result == 0:
  748. # param = config_.AB_EXP_CODE.get('136')
  749. # ab_code = param.get('ab_code')
  750. # expire_time = 3600
  751. # rule_key = param.get('rule_key')
  752. # data_key = param.get('data_key')
  753. # no_op_flag = True
  754. # elif '137' in ab_exp_code_list:
  755. # # 有回流 - 分享人群
  756. # if user_30day_return_result == 1:
  757. # param = config_.AB_EXP_CODE.get('137')
  758. # ab_code = param.get('ab_code')
  759. # expire_time = 3600
  760. # rule_key = param.get('rule_key')
  761. # data_key = param.get('data_key')
  762. # no_op_flag = True
  763. # elif '161' in ab_exp_code_list:
  764. # # 无回流 - 消费人群
  765. # if user_30day_return_result == 0:
  766. # param = config_.AB_EXP_CODE.get('136')
  767. # ab_code = param.get('ab_code')
  768. # expire_time = 3600
  769. # rule_key = param.get('rule_key')
  770. # data_key = param.get('data_key')
  771. # no_op_flag = True
  772. # # 有回流 - 分享人群
  773. # else:
  774. # param = config_.AB_EXP_CODE.get('137')
  775. # ab_code = param.get('ab_code')
  776. # expire_time = 3600
  777. # rule_key = param.get('rule_key')
  778. # data_key = param.get('data_key')
  779. # no_op_flag = True
  780. # elif '162' in ab_exp_code_list:
  781. # # 有回流
  782. # if user_30day_return_result == 1:
  783. # param = config_.AB_EXP_CODE.get('162')
  784. # ab_code = param.get('ab_code')
  785. # expire_time = 3600
  786. # rule_key = param.get('rule_key')
  787. # data_key = param.get('data_key')
  788. # no_op_flag = True
  789. # 老好看视频 宗教人群实验
  790. if '228' in ab_exp_code_list:
  791. # 天主教
  792. religion_param = config_.AB_EXP_CODE['228']
  793. religion_class_name = religion_param.get('religion_class_name')
  794. religion_class_flag = get_religion_class_with_mid(mid=mid, religion_class_name=religion_class_name)
  795. if religion_class_flag == 1:
  796. ab_code = religion_param.get('ab_code')
  797. rule_key = religion_param.get('rule_key')
  798. data_key = religion_param.get('data_key')
  799. rule_key_30day = religion_param.get('30day_rule_key')
  800. elif '229' in ab_exp_code_list:
  801. # 基督教
  802. religion_param = config_.AB_EXP_CODE['229']
  803. religion_class_name = religion_param.get('religion_class_name')
  804. religion_class_flag = get_religion_class_with_mid(mid=mid, religion_class_name=religion_class_name)
  805. if religion_class_flag == 1:
  806. ab_code = religion_param.get('ab_code')
  807. rule_key = religion_param.get('rule_key')
  808. data_key = religion_param.get('data_key')
  809. rule_key_30day = religion_param.get('30day_rule_key')
  810. else:
  811. for code, param in config_.AB_EXP_CODE.items():
  812. if code in ab_exp_code_list:
  813. ab_code = param.get('ab_code')
  814. rule_key = param.get('rule_key')
  815. data_key = param.get('data_key')
  816. rule_key_30day = param.get('30day_rule_key')
  817. shield_config = param.get('shield_config', config_.SHIELD_CONFIG)
  818. break
  819. """
  820. # 推荐条数 10->4 实验
  821. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  822. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  823. # if config_value:
  824. # config_value = eval(str(config_value))
  825. # else:
  826. # config_value = {}
  827. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  828. # size = int(config_value.get('size', 4))
  829. # top_K = int(config_value.get('K', 3))
  830. # flow_pool_P = float(config_value.get('P', 0.3))
  831. # else:
  832. # size = size
  833. # top_K = config_.K
  834. # flow_pool_P = config_.P
  835. # 算法实验相对对照组
  836. # if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  837. # ab_code = config_.AB_CODE['ab_initial']
  838. # expire_time = 24 * 3600
  839. # rule_key = config_.RULE_KEY['initial']
  840. # no_op_flag = True
  841. # 小时级更新-规则1 实验
  842. # elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  843. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  844. # expire_time = 3600
  845. # rule_key = config_.RULE_KEY['rule_rank1']
  846. # no_op_flag = True
  847. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  848. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  849. # expire_time = 3600
  850. # rule_key = config_.RULE_KEY['rule_rank2']
  851. # elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  852. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  853. # expire_time = 3600
  854. # rule_key = config_.RULE_KEY['rule_rank3']
  855. # no_op_flag = True
  856. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  857. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  858. # expire_time = 3600
  859. # rule_key = config_.RULE_KEY['rule_rank4']
  860. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  861. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  862. # expire_time = 3600
  863. # rule_key = config_.RULE_KEY['rule_rank5']
  864. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  865. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  866. # expire_time = 24 * 3600
  867. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  868. # no_op_flag = True
  869. # if config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  870. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  871. # expire_time = 3600
  872. # rule_key = config_.RULE_KEY['rule_rank6']
  873. # no_op_flag = True
  874. # elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  875. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  876. # expire_time = 24 * 3600
  877. # rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  878. # no_op_flag = True
  879. # elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  880. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  881. # expire_time = 3600
  882. # rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  883. # no_op_flag = True
  884. # elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  885. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  886. # expire_time = 3600
  887. # rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  888. # no_op_flag = True
  889. # elif config_.AB_EXP_CODE['24h_rule_rank2'] in ab_exp_code_list:
  890. # ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank2')
  891. # expire_time = 3600
  892. # rule_key = config_.RULE_KEY_24H['24h_rule_rank2']
  893. # no_op_flag = True
  894. # elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  895. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  896. # expire_time = 3600
  897. # rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  898. # no_op_flag = True
  899. # if config_.AB_EXP_CODE['region_rule_rank3'] in ab_exp_code_list or\
  900. # config_.AB_EXP_CODE['region_rule_rank3_appType_19'] in ab_exp_code_list or\
  901. # config_.AB_EXP_CODE['region_rule_rank3_appType_4'] in ab_exp_code_list or\
  902. # config_.AB_EXP_CODE['region_rule_rank3_appType_6'] in ab_exp_code_list or\
  903. # config_.AB_EXP_CODE['region_rule_rank3_appType_18'] in ab_exp_code_list:
  904. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  905. # expire_time = 3600
  906. # rule_key = config_.RULE_KEY_REGION['region_rule_rank3'].get('rule_key')
  907. # data_key = config_.RULE_KEY_REGION['region_rule_rank3'].get('data_key')
  908. # no_op_flag = True
  909. # if config_.AB_EXP_CODE['region_rule_rank4'] in ab_exp_code_list or\
  910. if config_.AB_EXP_CODE['region_rule_rank4_appType_19'] in ab_exp_code_list or \
  911. config_.AB_EXP_CODE['region_rule_rank4_appType_4'] in ab_exp_code_list or\
  912. config_.AB_EXP_CODE['region_rule_rank4_appType_6'] in ab_exp_code_list or\
  913. config_.AB_EXP_CODE['region_rule_rank4_appType_18'] in ab_exp_code_list:
  914. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  915. expire_time = 3600
  916. rule_key = config_.RULE_KEY_REGION['region_rule_rank4'].get('rule_key')
  917. data_key = config_.RULE_KEY_REGION['region_rule_rank4'].get('data_key')
  918. no_op_flag = True
  919. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data1'] in ab_exp_code_list:
  920. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  921. # expire_time = 3600
  922. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data1'].get('rule_key')
  923. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data1'].get('data_key')
  924. # no_op_flag = True
  925. # elif config_.AB_EXP_CODE['region_rule_rank3_appType_5_data2'] in ab_exp_code_list:
  926. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3_appType_5_data2')
  927. # expire_time = 3600
  928. # rule_key = config_.RULE_KEY_REGION['region_rule_rank3_appType_5_data2'].get('rule_key')
  929. # data_key = config_.RULE_KEY_REGION['region_rule_rank3_appType_5_data2'].get('data_key')
  930. # no_op_flag = True
  931. elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data3'] in ab_exp_code_list:
  932. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_5_data3')
  933. expire_time = 3600
  934. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data3'].get('rule_key')
  935. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data3'].get('data_key')
  936. no_op_flag = True
  937. elif config_.AB_EXP_CODE['region_rule_rank4_appType_5_data4'] in ab_exp_code_list:
  938. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_5_data4')
  939. expire_time = 3600
  940. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data4'].get('rule_key')
  941. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_5_data4'].get('data_key')
  942. no_op_flag = True
  943. elif config_.AB_EXP_CODE['region_rule_rank4_appType_0_data2'] in ab_exp_code_list:
  944. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_0_data2')
  945. expire_time = 3600
  946. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_0_data2'].get('rule_key')
  947. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_0_data2'].get('data_key')
  948. no_op_flag = True
  949. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_19_data2'] in ab_exp_code_list:
  950. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_19_data2')
  951. # expire_time = 3600
  952. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data2'].get('rule_key')
  953. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data2'].get('data_key')
  954. # no_op_flag = True
  955. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_19_data3'] in ab_exp_code_list:
  956. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_19_data3')
  957. # expire_time = 3600
  958. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data3'].get('rule_key')
  959. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_19_data3'].get('data_key')
  960. # no_op_flag = True
  961. elif config_.AB_EXP_CODE['region_rule_rank5_appType_0_data1'] in ab_exp_code_list:
  962. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank5_appType_0_data1')
  963. expire_time = 3600
  964. rule_key = config_.RULE_KEY_REGION['region_rule_rank5_appType_0_data1'].get('rule_key')
  965. data_key = config_.RULE_KEY_REGION['region_rule_rank5_appType_0_data1'].get('data_key')
  966. no_op_flag = True
  967. elif config_.AB_EXP_CODE['region_rule_rank4_appType_4_data2'] in ab_exp_code_list:
  968. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_4_data2')
  969. expire_time = 3600
  970. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data2'].get('rule_key')
  971. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data2'].get('data_key')
  972. no_op_flag = True
  973. elif config_.AB_EXP_CODE['region_rule_rank4_appType_4_data3'] in ab_exp_code_list:
  974. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_4_data3')
  975. expire_time = 3600
  976. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data3'].get('rule_key')
  977. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_4_data3'].get('data_key')
  978. no_op_flag = True
  979. elif config_.AB_EXP_CODE['region_rule_rank4_appType_6_data2'] in ab_exp_code_list:
  980. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_6_data2')
  981. expire_time = 3600
  982. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data2'].get('rule_key')
  983. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data2'].get('data_key')
  984. no_op_flag = True
  985. elif config_.AB_EXP_CODE['region_rule_rank4_appType_6_data3'] in ab_exp_code_list:
  986. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_6_data3')
  987. expire_time = 3600
  988. rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data3'].get('rule_key')
  989. data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_6_data3'].get('data_key')
  990. no_op_flag = True
  991. # elif config_.AB_EXP_CODE['region_rule_rank4_appType_18_data2'] in ab_exp_code_list:
  992. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4_appType_18_data2')
  993. # expire_time = 3600
  994. # rule_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_18_data2'].get('rule_key')
  995. # data_key = config_.RULE_KEY_REGION['region_rule_rank4_appType_18_data2'].get('data_key')
  996. # no_op_flag = True
  997. # elif config_.AB_EXP_CODE['region_rule_rank6_appType_0_data1'] in ab_exp_code_list:
  998. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank6_appType_0_data1')
  999. # expire_time = 3600
  1000. # rule_key = config_.RULE_KEY_REGION['region_rule_rank6_appType_0_data1'].get('rule_key')
  1001. # data_key = config_.RULE_KEY_REGION['region_rule_rank6_appType_0_data1'].get('data_key')
  1002. # no_op_flag = True
  1003. else:
  1004. ab_code = config_.AB_CODE['initial']
  1005. expire_time = 24 * 3600
  1006. rule_key = config_.RULE_KEY_REGION['initial'].get('rule_key')
  1007. data_key = config_.RULE_KEY_REGION['initial'].get('data_key')
  1008. # # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  1009. # if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  1010. # ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  1011. # expire_time = 3600
  1012. # flow_pool_P = config_.P_18_19
  1013. # no_op_flag = True
  1014. #
  1015. # elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  1016. # ab_code = config_.AB_CODE['rov_rank_appType_19']
  1017. # expire_time = 3600
  1018. # top_K = 0
  1019. # flow_pool_P = config_.P_18_19
  1020. # no_op_flag = True
  1021. #
  1022. # elif config_.AB_EXP_CODE['top_video_relevant_appType_19'] in ab_exp_code_list and page_type == 2:
  1023. # ab_code = config_.AB_CODE['top_video_relevant_appType_19']
  1024. # expire_time = 3600
  1025. # top_K = 1
  1026. # flow_pool_P = config_.P_18_19
  1027. # no_op_flag = True
  1028. #
  1029. # # 票圈最惊奇完整影视资源实验
  1030. # elif config_.AB_EXP_CODE['whole_movies'] in ab_exp_code_list:
  1031. # ab_code = config_.AB_CODE['whole_movies']
  1032. # expire_time = 24 * 3600
  1033. # no_op_flag = True
  1034. # 老视频实验
  1035. # if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  1036. # ab_code = config_.AB_CODE['old_video']
  1037. # no_op_flag = True
  1038. # old_video_index = 2
  1039. # else:
  1040. # old_video_index = -1
  1041. """
  1042. # APP实验组
  1043. if ab_info_data:
  1044. ab_info_app = {}
  1045. for page_code, item in json.loads(ab_info_data).items():
  1046. if not item:
  1047. continue
  1048. ab_info_code = item.get('eventId', None)
  1049. if ab_info_code:
  1050. ab_info_app[page_code] = ab_info_code
  1051. # print(f"======{ab_info_app}")
  1052. # 首页推荐
  1053. if recommend_type == 0:
  1054. app_ab_code = ab_info_app.get('10003', None)
  1055. for code, param in config_.APP_AB_CODE['10003'].items():
  1056. if code == app_ab_code:
  1057. ab_code = param.get('ab_code')
  1058. rule_key = param.get('rule_key')
  1059. data_key = param.get('data_key')
  1060. break
  1061. # # 相关推荐
  1062. # elif recommend_type == 1:
  1063. # if config_.APP_AB_CODE['10037'] == ab_info_app.get('10037', None):
  1064. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank4')
  1065. # expire_time = 3600
  1066. # rule_key = 'rule3'
  1067. # data_key = 'data1'
  1068. # no_op_flag = True
  1069. return top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, no_op_flag, old_video_index, rule_key_30day, shield_config
  1070. def video_homepage_recommend(request_id, mid, uid, size, app_type, algo_type,
  1071. client_info, ab_exp_info, params, ab_info_data, version_audit_status):
  1072. """
  1073. 首页线上推荐逻辑
  1074. :param request_id: request_id
  1075. :param mid: mid type-string
  1076. :param uid: uid type-string
  1077. :param size: 请求视频数量 type-int
  1078. :param app_type: 产品标识 type-int
  1079. :param algo_type: 算法类型 type-string
  1080. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  1081. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  1082. :param params:
  1083. :param ab_info_data: app实验分组参数
  1084. :param version_audit_status: 小程序版本审核参数:1-审核中,2-审核通过
  1085. :return:
  1086. """
  1087. # 对 vlog 切换10%的流量做实验
  1088. # 对mid进行哈希
  1089. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  1090. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  1091. # # 简单召回 - 排序 - 兜底
  1092. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  1093. # algo_type=algo_type, client_info=client_info,
  1094. # expire_time=3600,
  1095. # ab_code=config_.AB_CODE['rank_by_h'])
  1096. # # ab-test
  1097. # result = ab_test_op(rank_result=rank_result,
  1098. # ab_code_list=[config_.AB_CODE['position_insert']],
  1099. # app_type=app_type, mid=mid, uid=uid)
  1100. # # redis数据刷新
  1101. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  1102. # expire_time=3600)
  1103. # if app_type == config_.APP_TYPE['APP']:
  1104. # # 票圈视频APP
  1105. # top_K = config_.K
  1106. # flow_pool_P = config_.P
  1107. # # 简单召回 - 排序 - 兜底
  1108. # rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  1109. # mid=mid, uid=uid, app_type=app_type,
  1110. # size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1111. # algo_type=algo_type, client_info=client_info,
  1112. # expire_time=12 * 3600, params=params)
  1113. # # ab-test
  1114. # # result = ab_test_op(rank_result=rank_result,
  1115. # # ab_code_list=[config_.AB_CODE['position_insert']],
  1116. # # app_type=app_type, mid=mid, uid=uid)
  1117. # # redis数据刷新
  1118. # update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  1119. # top_K=top_K, expire_time=12 * 3600)
  1120. #
  1121. # else:
  1122. recommend_result = {}
  1123. param_st = time.time()
  1124. # 特殊mid 和 小程序审核版本推荐处理
  1125. if mid in get_special_mid_list() or version_audit_status == 1:
  1126. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  1127. recommend_result['videos'] = rank_result
  1128. return recommend_result
  1129. # 普通mid推荐处理
  1130. top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, \
  1131. no_op_flag, old_video_index, rule_key_30day, shield_config = \
  1132. get_recommend_params(recommend_type=0, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data, mid=mid,
  1133. app_type=app_type)
  1134. # log_.info({
  1135. # 'logTimestamp': int(time.time() * 1000),
  1136. # 'request_id': request_id,
  1137. # 'app_type': app_type,
  1138. # 'mid': mid,
  1139. # 'uid': uid,
  1140. # 'operation': 'get_recommend_params',
  1141. # 'executeTime': (time.time() - param_st) * 1000
  1142. # })
  1143. recommend_result['getRecommendParamsTime'] = (time.time() - param_st) * 1000
  1144. # 简单召回 - 排序 - 兜底
  1145. get_result_st = time.time()
  1146. result = video_recommend(request_id=request_id,
  1147. mid=mid, uid=uid, app_type=app_type,
  1148. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1149. algo_type=algo_type, client_info=client_info,
  1150. ab_code=ab_code, expire_time=expire_time,
  1151. rule_key=rule_key, data_key=data_key,
  1152. no_op_flag=no_op_flag, old_video_index=old_video_index,
  1153. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1154. # log_.info({
  1155. # 'logTimestamp': int(time.time() * 1000),
  1156. # 'request_id': request_id,
  1157. # 'app_type': app_type,
  1158. # 'mid': mid,
  1159. # 'uid': uid,
  1160. # 'operation': 'get_recommend_result',
  1161. # 'executeTime': (time.time() - get_result_st) * 1000
  1162. # })
  1163. recommend_result['recommendOperation'] = result
  1164. rank_result = result.get('rankResult')
  1165. recommend_result['videos'] = rank_result
  1166. recommend_result['getRecommendResultTime'] = (time.time() - get_result_st) * 1000
  1167. # ab-test
  1168. # result = ab_test_op(rank_result=rank_result,
  1169. # ab_code_list=[config_.AB_CODE['position_insert']],
  1170. # app_type=app_type, mid=mid, uid=uid)
  1171. # redis数据刷新
  1172. update_redis_st = time.time()
  1173. update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1174. # log_.info({
  1175. # 'logTimestamp': int(time.time() * 1000),
  1176. # 'request_id': request_id,
  1177. # 'app_type': app_type,
  1178. # 'mid': mid,
  1179. # 'uid': uid,
  1180. # 'operation': 'update_redis_data',
  1181. # 'executeTime': (time.time() - update_redis_st) * 1000
  1182. # })
  1183. recommend_result['updateRedisDataTime'] = (time.time() - update_redis_st) * 1000
  1184. return recommend_result
  1185. # return rank_result
  1186. def video_relevant_recommend(request_id, video_id, mid, uid, size, app_type, ab_exp_info, client_info,
  1187. page_type, params, ab_info_data, version_audit_status):
  1188. """
  1189. 相关推荐逻辑
  1190. :param request_id: request_id
  1191. :param video_id: 相关推荐的头部视频id
  1192. :param mid: mid type-string
  1193. :param uid: uid type-string
  1194. :param size: 请求视频数量 type-int
  1195. :param app_type: 产品标识 type-int
  1196. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  1197. :param client_info: 地域参数
  1198. :param page_type: 页面区分参数 1:详情页;2:分享页
  1199. :param params:
  1200. :param ab_info_data: app实验分组参数
  1201. :param version_audit_status: 小程序版本审核参数:1-审核中,2-审核通过
  1202. :return: videos type-list
  1203. """
  1204. recommend_result = {}
  1205. param_st = time.time()
  1206. # 特殊mid 和 小程序审核版本推荐处理
  1207. if mid in get_special_mid_list() or version_audit_status == 1:
  1208. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  1209. recommend_result['videos'] = rank_result
  1210. return recommend_result
  1211. # return rank_result
  1212. # 普通mid推荐处理
  1213. top_K, flow_pool_P, ab_code, rule_key, data_key, expire_time, \
  1214. no_op_flag, old_video_index, rule_key_30day, shield_config = \
  1215. get_recommend_params(recommend_type=1, ab_exp_info=ab_exp_info, ab_info_data=ab_info_data, page_type=page_type,
  1216. mid=mid, app_type=app_type)
  1217. # log_.info({
  1218. # 'logTimestamp': int(time.time() * 1000),
  1219. # 'request_id': request_id,
  1220. # 'app_type': app_type,
  1221. # 'mid': mid,
  1222. # 'uid': uid,
  1223. # 'operation': 'get_recommend_params',
  1224. # 'executeTime': (time.time() - param_st) * 1000
  1225. # })
  1226. recommend_result['getRecommendParamsTime'] = (time.time() - param_st) * 1000
  1227. # 简单召回 - 排序 - 兜底
  1228. get_result_st = time.time()
  1229. result = video_recommend(request_id=request_id,
  1230. mid=mid, uid=uid, app_type=app_type,
  1231. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  1232. algo_type='', client_info=client_info,
  1233. ab_code=ab_code, expire_time=expire_time,
  1234. rule_key=rule_key, data_key=data_key, no_op_flag=no_op_flag,
  1235. old_video_index=old_video_index, video_id=video_id,
  1236. params=params, rule_key_30day=rule_key_30day, shield_config=shield_config)
  1237. # log_.info({
  1238. # 'logTimestamp': int(time.time() * 1000),
  1239. # 'request_id': request_id,
  1240. # 'app_type': app_type,
  1241. # 'mid': mid,
  1242. # 'uid': uid,
  1243. # 'operation': 'get_recommend_result',
  1244. # 'executeTime': (time.time() - get_result_st) * 1000
  1245. # })
  1246. recommend_result['recommendOperation'] = result
  1247. rank_result = result.get('rankResult')
  1248. recommend_result['videos'] = rank_result
  1249. recommend_result['getRecommendResultTime'] = (time.time() - get_result_st) * 1000
  1250. # ab-test
  1251. # result = ab_test_op(rank_result=rank_result,
  1252. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  1253. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  1254. # redis数据刷新
  1255. update_redis_st = time.time()
  1256. update_redis_data(result=rank_result, app_type=app_type, mid=mid, top_K=top_K)
  1257. # log_.info({
  1258. # 'logTimestamp': int(time.time() * 1000),
  1259. # 'request_id': request_id,
  1260. # 'app_type': app_type,
  1261. # 'mid': mid,
  1262. # 'uid': uid,
  1263. # 'operation': 'update_redis_data',
  1264. # 'executeTime': (time.time() - update_redis_st) * 1000
  1265. # })
  1266. recommend_result['updateRedisDataTime'] = (time.time() - update_redis_st) * 1000
  1267. return recommend_result
  1268. # return rank_result
  1269. def special_mid_recommend(request_id, mid, uid, app_type, size,
  1270. ab_code=config_.AB_CODE['special_mid'],
  1271. push_from=config_.PUSH_FROM['special_mid'],
  1272. expire_time=24*3600):
  1273. redis_helper = RedisHelper()
  1274. # 特殊mid推荐指定视频列表
  1275. pool_recall = PoolRecall(request_id=request_id, app_type=app_type,
  1276. mid=mid, uid=uid, ab_code=ab_code)
  1277. # 获取相关redis key
  1278. special_key_name, redis_date = pool_recall.get_pool_redis_key(pool_type='special')
  1279. # 用户上一次在rov召回池对应的位置
  1280. last_special_recall_key = f'{config_.LAST_VIDEO_FROM_SPECIAL_POOL_PREFIX}{app_type}:{mid}:{redis_date}'
  1281. value = redis_helper.get_data_from_redis(last_special_recall_key)
  1282. if value:
  1283. idx = redis_helper.get_index_with_data(special_key_name, value)
  1284. if not idx:
  1285. idx = 0
  1286. else:
  1287. idx += 1
  1288. else:
  1289. idx = 0
  1290. recall_result = []
  1291. # 每次获取的视频数
  1292. get_size = size * 5
  1293. # 记录获取频次
  1294. freq = 0
  1295. while len(recall_result) < size:
  1296. freq += 1
  1297. if freq > config_.MAX_FREQ_FROM_ROV_POOL:
  1298. break
  1299. # 获取数据
  1300. data = redis_helper.get_data_zset_with_index(key_name=special_key_name,
  1301. start=idx, end=idx + get_size - 1,
  1302. with_scores=True)
  1303. if not data:
  1304. break
  1305. # 获取视频id,并转换类型为int,并存储为key-value{videoId: score}
  1306. # 添加视频源参数 pushFrom, abCode
  1307. temp_result = [{'videoId': int(value[0]), 'rovScore': value[1],
  1308. 'pushFrom': push_from, 'abCode': ab_code}
  1309. for value in data]
  1310. recall_result.extend(temp_result)
  1311. idx += get_size
  1312. # 将此次获取的末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  1313. if mid and recall_result:
  1314. # mid为空时,不做记录
  1315. redis_helper.set_data_to_redis(key_name=last_special_recall_key,
  1316. value=recall_result[:size][-1]['videoId'],
  1317. expire_time=expire_time)
  1318. return recall_result[:size]
  1319. def get_special_mid_list():
  1320. redis_helper = RedisHelper()
  1321. special_mid_list = redis_helper.get_data_from_set(key_name=config_.KEY_NAME_SPECIAL_MID)
  1322. if special_mid_list:
  1323. return special_mid_list
  1324. else:
  1325. return []
  1326. if __name__ == '__main__':
  1327. videos = [
  1328. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  1329. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  1330. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  1331. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  1332. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  1333. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  1334. "pushFrom": "flow_pool", "abCode": 10000},
  1335. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  1336. "abCode": 10000},
  1337. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  1338. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  1339. "pushFrom": "flow_pool", "abCode": 10000},
  1340. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  1341. ]
  1342. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  1343. print(res)