recommend.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(request_id, app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param request_id: request_id
  22. :param app_type: 产品标识 type-int
  23. :param mid: mid
  24. :param uid: uid
  25. :param head_vid: 相关推荐头部视频id type-int
  26. :param videos: 当前相关推荐结果 type-list
  27. :param size: 返回视频个数 type-int
  28. :return: rank_result
  29. """
  30. # 获取头部视频对应的相关性视频
  31. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  32. redis_helper = RedisHelper()
  33. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  34. if relevant_videos is None:
  35. # 该视频没有指定的相关性视频
  36. return videos
  37. relevant_videos = json.loads(relevant_videos)
  38. # 按照指定顺序排序
  39. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  40. # 过滤
  41. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  42. filter_helper = FilterVideos(request_id=request_id, app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  43. filtered_ids = filter_helper.filter_videos()
  44. if filtered_ids is None:
  45. return videos
  46. # 获取生效中的视频
  47. now = int(time.time())
  48. relevant_videos_in_effect = [
  49. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  50. 'abCode': config_.AB_CODE['relevant_video_op']}
  51. for item in relevant_videos_sorted
  52. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  53. ]
  54. if len(relevant_videos_in_effect) == 0:
  55. return videos
  56. # 与现有排序结果 进行合并重排
  57. # 获取现有排序结果中流量池视频 及其位置
  58. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  59. flow_pool_videos = []
  60. other_videos = []
  61. for i, item in enumerate(videos):
  62. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  63. flow_pool_videos.append((i, item))
  64. elif item.get('videoId') not in relevant_ids:
  65. other_videos.append(item)
  66. else:
  67. continue
  68. # 重排,保持流量池视频位置不变
  69. rank_result = relevant_videos_in_effect + other_videos
  70. for i, item in flow_pool_videos:
  71. rank_result.insert(i, item)
  72. return rank_result[:size]
  73. def video_position_recommend(request_id, mid, uid, app_type, videos):
  74. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  75. # algo_type=algo_type, client_info=client_info)
  76. redis_helper = RedisHelper()
  77. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  78. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  79. if pos1_vids is not None:
  80. pos1_vids = ast.literal_eval(pos1_vids)
  81. if pos2_vids is not None:
  82. pos2_vids = ast.literal_eval(pos2_vids)
  83. pos1_vids = [] if pos1_vids is None else pos1_vids
  84. pos2_vids = [] if pos2_vids is None else pos2_vids
  85. pos1_vids = [int(i) for i in pos1_vids]
  86. pos2_vids = [int(i) for i in pos2_vids]
  87. filter_1 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  88. filter_2 = FilterVideos(request_id=request_id, app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  89. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  90. gevent.joinall(t)
  91. filted_list = [i.get() for i in t]
  92. pos1_vids = filted_list[0]
  93. pos2_vids = filted_list[1]
  94. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  95. if pos1_vids is not None and len(pos1_vids) >0 :
  96. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  97. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  98. if pos2_vids is not None and len(pos2_vids) >0 :
  99. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  100. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  101. return videos[:10]
  102. def positon_duplicate(pos1_vids, pos2_vids, videos):
  103. s = set()
  104. if pos1_vids is not None and len(pos1_vids) >0:
  105. s.add(int(pos1_vids[0]))
  106. if pos2_vids is not None and len(pos2_vids) >0:
  107. s.add(int(pos2_vids[0]))
  108. l = []
  109. for item in videos:
  110. if item['videoId'] in s:
  111. continue
  112. else:
  113. l.append(item)
  114. return l
  115. def video_recommend(request_id, mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info, expire_time=24*3600,
  116. ab_code=config_.AB_CODE['initial'], rule_key='', no_op_flag=False, old_video_index=-1, video_id=None,
  117. params=None):
  118. """
  119. 首页线上推荐逻辑
  120. :param request_id: request_id
  121. :param mid: mid type-string
  122. :param uid: uid type-string
  123. :param size: 请求视频数量 type-int
  124. :param top_K: 保证topK为召回池视频 type-int
  125. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  126. :param app_type: 产品标识 type-int
  127. :param algo_type: 算法类型 type-string
  128. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  129. :param expire_time: 末位视频记录redis过期时间
  130. :param ab_code: AB实验code
  131. :param video_id: 相关推荐头部视频id
  132. :param params:
  133. :return:
  134. """
  135. # ####### 多进程召回
  136. start_recall = time.time()
  137. # log_.info('====== recall')
  138. '''
  139. cores = multiprocessing.cpu_count()
  140. pool = multiprocessing.Pool(processes=cores)
  141. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  142. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  143. pool_list = [
  144. # rov召回池
  145. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  146. # 流量池
  147. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  148. ]
  149. recall_result_list = [p.get() for p in pool_list]
  150. pool.close()
  151. pool.join()
  152. '''
  153. recall_result_list = []
  154. pool_recall = PoolRecall(request_id=request_id,
  155. app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  156. client_info=client_info, rule_key=rule_key, no_op_flag=no_op_flag,
  157. params=params)
  158. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  159. # 小时级实验
  160. if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()]:
  161. t = [gevent.spawn(pool_recall.rule_recall_by_h, size, expire_time),
  162. gevent.spawn(pool_recall.flow_pool_recall, size)]
  163. # 小时级实验
  164. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  165. t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  166. gevent.spawn(pool_recall.flow_pool_recall, size)]
  167. # 地域分组实验
  168. elif ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  169. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  170. gevent.spawn(pool_recall.flow_pool_recall, size)]
  171. # 最惊奇相关推荐实验
  172. elif ab_code == config_.AB_CODE['top_video_relevant_appType_19']:
  173. t = [gevent.spawn(pool_recall.relevant_recall_19, video_id, size, expire_time),
  174. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  175. # 最惊奇完整影视实验
  176. elif ab_code == config_.AB_CODE['whole_movies']:
  177. t = [gevent.spawn(pool_recall.rov_pool_recall_19, size, expire_time)]
  178. # 最惊奇/老好看实验
  179. elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  180. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  181. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  182. # 天级实验
  183. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  184. t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  185. gevent.spawn(pool_recall.flow_pool_recall, size)]
  186. # 老视频实验
  187. # elif ab_code in [config_.AB_CODE['old_video']]:
  188. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  189. # gevent.spawn(pool_recall.flow_pool_recall, size),
  190. # gevent.spawn(pool_recall.old_videos_recall, size)]
  191. else:
  192. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  193. gevent.spawn(pool_recall.flow_pool_recall, size)]
  194. gevent.joinall(t)
  195. recall_result_list = [i.get() for i in t]
  196. # end_recall = time.time()
  197. log_.info({
  198. 'logTimestamp': int(time.time() * 1000),
  199. 'request_id': request_id,
  200. 'mid': mid,
  201. 'uid': uid,
  202. 'operation': 'recall',
  203. 'recall_result': recall_result_list,
  204. 'executeTime': (time.time() - start_recall) * 1000
  205. })
  206. # ####### 排序
  207. start_rank = time.time()
  208. # log_.info('====== rank')
  209. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  210. if ab_code in [
  211. config_.AB_CODE['rov_rank_appType_18_19'],
  212. config_.AB_CODE['rov_rank_appType_19'],
  213. config_.AB_CODE['top_video_relevant_appType_19']
  214. ]:
  215. data = {
  216. 'rov_pool_recall': recall_result_list[0],
  217. 'flow_pool_recall': recall_result_list[1]
  218. }
  219. else:
  220. data = {
  221. 'rov_pool_recall': recall_result_list[0],
  222. 'flow_pool_recall': []
  223. }
  224. else:
  225. data = {
  226. 'rov_pool_recall': recall_result_list[0],
  227. 'flow_pool_recall': recall_result_list[1]
  228. }
  229. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=flow_pool_P)
  230. # 老视频实验
  231. # if ab_code in [config_.AB_CODE['old_video']]:
  232. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  233. # size=size, top_K=top_K, old_video_index=old_video_index)
  234. # end_rank = time.time()
  235. log_.info({
  236. 'logTimestamp': int(time.time() * 1000),
  237. 'request_id': request_id,
  238. 'mid': mid,
  239. 'uid': uid,
  240. 'operation': 'rank',
  241. 'rank_result': rank_result,
  242. 'executeTime': (time.time() - start_rank) * 1000
  243. })
  244. if not rank_result:
  245. # 兜底策略
  246. # log_.info('====== bottom strategy')
  247. start_bottom = time.time()
  248. rank_result = bottom_strategy(request_id=request_id, size=size, app_type=app_type, ab_code=ab_code, params=params)
  249. # end_bottom = time.time()
  250. log_.info({
  251. 'logTimestamp': int(time.time() * 1000),
  252. 'request_id': request_id,
  253. 'mid': mid,
  254. 'uid': uid,
  255. 'operation': 'bottom',
  256. 'bottom_result': rank_result,
  257. 'executeTime': (time.time() - start_bottom) * 1000
  258. })
  259. return rank_result, last_rov_recall_key
  260. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  261. """
  262. 对排序后的结果 按照AB实验进行对应的分组操作
  263. :param rank_result: 排序后的结果
  264. :param ab_code_list: 此次请求参与的 ab实验组
  265. :param app_type: 产品标识
  266. :param mid: mid
  267. :param uid: uid
  268. :param kwargs: 其他参数
  269. :return:
  270. """
  271. # ####### 视频宽高比AB实验
  272. # 对内容精选进行 视频宽高比分发实验
  273. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  274. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  275. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  276. # app_type, mid, uid, rank_result))
  277. # 按position位置排序
  278. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  279. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  280. print('===========================')
  281. print(rank_result)
  282. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  283. app_type, mid, uid, rank_result))
  284. # 相关推荐强插
  285. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  286. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  287. # head_vid = kwargs['head_vid']
  288. # size = kwargs['size']
  289. # rank_result = relevant_video_top_recommend(
  290. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  291. # )
  292. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  293. # app_type, mid, uid, head_vid, rank_result))
  294. return rank_result
  295. def update_redis_data(result, app_type, mid, last_rov_recall_key, top_K, expire_time=24*3600):
  296. """
  297. 根据最终的排序结果更新相关redis数据
  298. :param result: 排序结果
  299. :param app_type: 产品标识
  300. :param mid: mid
  301. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  302. :param top_K: 保证topK为召回池视频 type-int
  303. :param expire_time: 末位视频记录redis过期时间
  304. :return: None
  305. """
  306. # ####### redis数据刷新
  307. try:
  308. # log_.info('====== update redis')
  309. if mid and mid != 'null':
  310. # mid为空时,不做预曝光和定位数据更新
  311. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  312. redis_helper = RedisHelper()
  313. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  314. preview_video_ids = [int(item['videoId']) for item in result]
  315. if preview_video_ids:
  316. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  317. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  318. # log_.info('preview redis update success!')
  319. # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  320. rov_recall_video = [item['videoId'] for item in result[:top_K]
  321. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  322. if len(rov_recall_video) > 0:
  323. if app_type == config_.APP_TYPE['APP']:
  324. key_name = config_.UPDATE_ROV_KEY_NAME_APP
  325. else:
  326. key_name = config_.UPDATE_ROV_KEY_NAME
  327. if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  328. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  329. expire_time=expire_time)
  330. # log_.info('last video redis update success!')
  331. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  332. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  333. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  334. if flow_recall_video:
  335. update_local_distribute_count(flow_recall_video)
  336. # log_.info('update local distribute count success!')
  337. except Exception as e:
  338. log_.error("update redis data fail!")
  339. log_.error(traceback.format_exc())
  340. def update_local_distribute_count(videos):
  341. """
  342. 更新本地分发数
  343. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  344. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  345. :return:
  346. """
  347. try:
  348. redis_helper = RedisHelper()
  349. for item in videos:
  350. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  351. # 本地记录的分发数 - 1
  352. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  353. # if redis_helper.key_exists(key_name=key_name):
  354. # # 该视频本地有记录,本地记录的分发数 - 1
  355. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  356. # else:
  357. # # 该视频本地无记录,接口获取的分发数 - 1
  358. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  359. except Exception as e:
  360. log_.error('update_local_distribute_count error...')
  361. log_.error(traceback.format_exc())
  362. def get_recommend_params(ab_exp_info, page_type=0):
  363. """
  364. 根据实验分组给定对应的推荐参数
  365. :param ab_exp_info: AB实验组参数
  366. :param page_type: 页面区分参数,默认:0(首页)
  367. :return:
  368. """
  369. top_K = config_.K
  370. flow_pool_P = config_.P
  371. # 不获取人工干预数据标记
  372. no_op_flag = False
  373. old_video_index = -1
  374. if not ab_exp_info:
  375. ab_code = config_.AB_CODE['initial']
  376. expire_time = 24 * 3600
  377. rule_key = config_.RULE_KEY['initial']
  378. # old_video_index = -1
  379. else:
  380. ab_exp_code_list = []
  381. config_value_dict = {}
  382. for _, item in ab_exp_info.items():
  383. if not item:
  384. continue
  385. for ab_item in item:
  386. ab_exp_code = ab_item.get('abExpCode', None)
  387. if not ab_exp_code:
  388. continue
  389. ab_exp_code_list.append(str(ab_exp_code))
  390. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  391. # 推荐条数 10->4 实验
  392. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  393. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  394. # if config_value:
  395. # config_value = eval(str(config_value))
  396. # else:
  397. # config_value = {}
  398. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  399. # size = int(config_value.get('size', 4))
  400. # top_K = int(config_value.get('K', 3))
  401. # flow_pool_P = float(config_value.get('P', 0.3))
  402. # else:
  403. # size = size
  404. # top_K = config_.K
  405. # flow_pool_P = config_.P
  406. # 算法实验相对对照组
  407. # if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  408. # ab_code = config_.AB_CODE['ab_initial']
  409. # expire_time = 24 * 3600
  410. # rule_key = config_.RULE_KEY['initial']
  411. # no_op_flag = True
  412. # 小时级更新-规则1 实验
  413. # elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  414. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  415. # expire_time = 3600
  416. # rule_key = config_.RULE_KEY['rule_rank1']
  417. # no_op_flag = True
  418. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  419. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  420. # expire_time = 3600
  421. # rule_key = config_.RULE_KEY['rule_rank2']
  422. # elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  423. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  424. # expire_time = 3600
  425. # rule_key = config_.RULE_KEY['rule_rank3']
  426. # no_op_flag = True
  427. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  428. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  429. # expire_time = 3600
  430. # rule_key = config_.RULE_KEY['rule_rank4']
  431. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  432. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  433. # expire_time = 3600
  434. # rule_key = config_.RULE_KEY['rule_rank5']
  435. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  436. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  437. # expire_time = 24 * 3600
  438. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  439. # no_op_flag = True
  440. if config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  441. ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  442. expire_time = 3600
  443. rule_key = config_.RULE_KEY['rule_rank6']
  444. no_op_flag = True
  445. # elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  446. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  447. # expire_time = 24 * 3600
  448. # rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  449. # no_op_flag = True
  450. # elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  451. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  452. # expire_time = 3600
  453. # rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  454. # no_op_flag = True
  455. elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  456. ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  457. expire_time = 3600
  458. rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  459. no_op_flag = True
  460. elif config_.AB_EXP_CODE['24h_rule_rank2'] in ab_exp_code_list:
  461. ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank2')
  462. expire_time = 3600
  463. rule_key = config_.RULE_KEY_24H['24h_rule_rank2']
  464. no_op_flag = True
  465. # elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  466. # ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  467. # expire_time = 3600
  468. # rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  469. # no_op_flag = True
  470. elif config_.AB_EXP_CODE['region_rule_rank3'] in ab_exp_code_list:
  471. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank3')
  472. expire_time = 3600
  473. rule_key = config_.RULE_KEY_REGION['region_rule_rank3']
  474. no_op_flag = True
  475. else:
  476. ab_code = config_.AB_CODE['initial']
  477. expire_time = 24 * 3600
  478. rule_key = config_.RULE_KEY['initial']
  479. # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  480. if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  481. ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  482. expire_time = 3600
  483. flow_pool_P = config_.P_18_19
  484. no_op_flag = True
  485. elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  486. ab_code = config_.AB_CODE['rov_rank_appType_19']
  487. expire_time = 3600
  488. top_K = 0
  489. flow_pool_P = config_.P_18_19
  490. no_op_flag = True
  491. elif config_.AB_EXP_CODE['top_video_relevant_appType_19'] in ab_exp_code_list and page_type == 2:
  492. ab_code = config_.AB_CODE['top_video_relevant_appType_19']
  493. expire_time = 3600
  494. top_K = 1
  495. flow_pool_P = config_.P_18_19
  496. no_op_flag = True
  497. # 票圈最惊奇完整影视资源实验
  498. elif config_.AB_EXP_CODE['whole_movies'] in ab_exp_code_list:
  499. ab_code = config_.AB_CODE['whole_movies']
  500. expire_time = 24 * 3600
  501. no_op_flag = True
  502. # 老视频实验
  503. # if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  504. # ab_code = config_.AB_CODE['old_video']
  505. # no_op_flag = True
  506. # old_video_index = 2
  507. # else:
  508. # old_video_index = -1
  509. return top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index
  510. def video_homepage_recommend(request_id, mid, uid, size, app_type, algo_type, client_info, ab_exp_info, params):
  511. """
  512. 首页线上推荐逻辑
  513. :param request_id: request_id
  514. :param mid: mid type-string
  515. :param uid: uid type-string
  516. :param size: 请求视频数量 type-int
  517. :param app_type: 产品标识 type-int
  518. :param algo_type: 算法类型 type-string
  519. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  520. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  521. :param params:
  522. :return:
  523. """
  524. # 对 vlog 切换10%的流量做实验
  525. # 对mid进行哈希
  526. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  527. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  528. # # 简单召回 - 排序 - 兜底
  529. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  530. # algo_type=algo_type, client_info=client_info,
  531. # expire_time=3600,
  532. # ab_code=config_.AB_CODE['rank_by_h'])
  533. # # ab-test
  534. # result = ab_test_op(rank_result=rank_result,
  535. # ab_code_list=[config_.AB_CODE['position_insert']],
  536. # app_type=app_type, mid=mid, uid=uid)
  537. # # redis数据刷新
  538. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  539. # expire_time=3600)
  540. if app_type == config_.APP_TYPE['APP']:
  541. # 票圈视频APP
  542. top_K = config_.K
  543. flow_pool_P = config_.P
  544. # 简单召回 - 排序 - 兜底
  545. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  546. mid=mid, uid=uid, app_type=app_type,
  547. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  548. algo_type=algo_type, client_info=client_info,
  549. expire_time=12 * 3600, params=params)
  550. # ab-test
  551. # result = ab_test_op(rank_result=rank_result,
  552. # ab_code_list=[config_.AB_CODE['position_insert']],
  553. # app_type=app_type, mid=mid, uid=uid)
  554. # redis数据刷新
  555. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  556. top_K=top_K, expire_time=12 * 3600)
  557. else:
  558. param_st = time.time()
  559. # 特殊mid推荐处理
  560. if mid in get_special_mid_list():
  561. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  562. return rank_result
  563. # 普通mid推荐处理
  564. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  565. get_recommend_params(ab_exp_info=ab_exp_info)
  566. log_.info({
  567. 'logTimestamp': int(time.time() * 1000),
  568. 'request_id': request_id,
  569. 'app_type': app_type,
  570. 'mid': mid,
  571. 'uid': uid,
  572. 'operation': 'get_recommend_params',
  573. 'executeTime': (time.time() - param_st) * 1000
  574. })
  575. # 简单召回 - 排序 - 兜底
  576. get_result_st = time.time()
  577. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  578. mid=mid, uid=uid, app_type=app_type,
  579. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  580. algo_type=algo_type, client_info=client_info,
  581. ab_code=ab_code, expire_time=expire_time,
  582. rule_key=rule_key, no_op_flag=no_op_flag,
  583. old_video_index=old_video_index,
  584. params=params)
  585. log_.info({
  586. 'logTimestamp': int(time.time() * 1000),
  587. 'request_id': request_id,
  588. 'app_type': app_type,
  589. 'mid': mid,
  590. 'uid': uid,
  591. 'operation': 'get_recommend_result',
  592. 'executeTime': (time.time() - get_result_st) * 1000
  593. })
  594. # ab-test
  595. # result = ab_test_op(rank_result=rank_result,
  596. # ab_code_list=[config_.AB_CODE['position_insert']],
  597. # app_type=app_type, mid=mid, uid=uid)
  598. # redis数据刷新
  599. update_redis_st = time.time()
  600. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  601. top_K=top_K)
  602. log_.info({
  603. 'logTimestamp': int(time.time() * 1000),
  604. 'request_id': request_id,
  605. 'app_type': app_type,
  606. 'mid': mid,
  607. 'uid': uid,
  608. 'operation': 'update_redis_data',
  609. 'executeTime': (time.time() - update_redis_st) * 1000
  610. })
  611. return rank_result
  612. def video_relevant_recommend(request_id, video_id, mid, uid, size, app_type, ab_exp_info, client_info, page_type, params):
  613. """
  614. 相关推荐逻辑
  615. :param request_id: request_id
  616. :param video_id: 相关推荐的头部视频id
  617. :param mid: mid type-string
  618. :param uid: uid type-string
  619. :param size: 请求视频数量 type-int
  620. :param app_type: 产品标识 type-int
  621. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  622. :param client_info: 地域参数
  623. :param page_type: 页面区分参数 1:详情页;2:分享页
  624. :param params:
  625. :return: videos type-list
  626. """
  627. param_st = time.time()
  628. # 特殊mid推荐处理
  629. if mid in get_special_mid_list():
  630. rank_result = special_mid_recommend(request_id=request_id, mid=mid, uid=uid, app_type=app_type, size=size)
  631. return rank_result
  632. # 普通mid推荐处理
  633. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  634. get_recommend_params(ab_exp_info=ab_exp_info, page_type=page_type)
  635. log_.info({
  636. 'logTimestamp': int(time.time() * 1000),
  637. 'request_id': request_id,
  638. 'app_type': app_type,
  639. 'mid': mid,
  640. 'uid': uid,
  641. 'operation': 'get_recommend_params',
  642. 'executeTime': (time.time() - param_st) * 1000
  643. })
  644. # 简单召回 - 排序 - 兜底
  645. get_result_st = time.time()
  646. rank_result, last_rov_recall_key = video_recommend(request_id=request_id,
  647. mid=mid, uid=uid, app_type=app_type,
  648. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  649. algo_type='', client_info=client_info,
  650. ab_code=ab_code, expire_time=expire_time,
  651. rule_key=rule_key, no_op_flag=no_op_flag,
  652. old_video_index=old_video_index, video_id=video_id,
  653. params=params)
  654. log_.info({
  655. 'logTimestamp': int(time.time() * 1000),
  656. 'request_id': request_id,
  657. 'app_type': app_type,
  658. 'mid': mid,
  659. 'uid': uid,
  660. 'operation': 'get_recommend_result',
  661. 'executeTime': (time.time() - get_result_st) * 1000
  662. })
  663. # ab-test
  664. # result = ab_test_op(rank_result=rank_result,
  665. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  666. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  667. # redis数据刷新
  668. update_redis_st = time.time()
  669. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  670. top_K=top_K)
  671. log_.info({
  672. 'logTimestamp': int(time.time() * 1000),
  673. 'request_id': request_id,
  674. 'app_type': app_type,
  675. 'mid': mid,
  676. 'uid': uid,
  677. 'operation': 'update_redis_data',
  678. 'executeTime': (time.time() - update_redis_st) * 1000
  679. })
  680. return rank_result
  681. def special_mid_recommend(request_id, mid, uid, app_type, size,
  682. ab_code=config_.AB_CODE['special_mid'],
  683. push_from=config_.PUSH_FROM['special_mid'],
  684. expire_time=24*3600):
  685. redis_helper = RedisHelper()
  686. # 特殊mid推荐指定视频列表
  687. pool_recall = PoolRecall(request_id=request_id, app_type=app_type,
  688. mid=mid, uid=uid, ab_code=ab_code)
  689. # 获取相关redis key
  690. special_key_name, redis_date = pool_recall.get_pool_redis_key(pool_type='special')
  691. # 用户上一次在rov召回池对应的位置
  692. last_special_recall_key = f'{config_.LAST_VIDEO_FROM_ROV_POOL_PREFIX}{app_type}.{mid}.{redis_date}'
  693. value = redis_helper.get_data_from_redis(last_special_recall_key)
  694. if value:
  695. idx = redis_helper.get_index_with_data(special_key_name, value)
  696. if not idx:
  697. idx = 0
  698. else:
  699. idx += 1
  700. else:
  701. idx = 0
  702. recall_result = []
  703. # 每次获取的视频数
  704. get_size = size * 5
  705. # 记录获取频次
  706. freq = 0
  707. while len(recall_result) < size:
  708. freq += 1
  709. if freq > config_.MAX_FREQ_FROM_ROV_POOL:
  710. break
  711. # 获取数据
  712. data = redis_helper.get_data_zset_with_index(key_name=special_key_name,
  713. start=idx, end=idx + get_size - 1,
  714. with_scores=True)
  715. if not data:
  716. break
  717. # 获取视频id,并转换类型为int,并存储为key-value{videoId: score}
  718. # 添加视频源参数 pushFrom, abCode
  719. temp_result = [{'videoId': int(value[0]), 'rovScore': value[1],
  720. 'pushFrom': push_from, 'abCode': ab_code}
  721. for value in data]
  722. recall_result.extend(temp_result)
  723. # 将此次获取的末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  724. if mid:
  725. # mid为空时,不做记录
  726. redis_helper.set_data_to_redis(key_name=last_special_recall_key, value=data[-1][0], expire_time=expire_time)
  727. idx += get_size
  728. return recall_result[:size]
  729. def get_special_mid_list():
  730. redis_helper = RedisHelper()
  731. special_mid_list = redis_helper.get_data_from_set(key_name=config_.KEY_NAME_SPECIAL_MID)
  732. if special_mid_list:
  733. return special_mid_list
  734. else:
  735. return []
  736. if __name__ == '__main__':
  737. videos = [
  738. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  739. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  740. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  741. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  742. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  743. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  744. "pushFrom": "flow_pool", "abCode": 10000},
  745. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  746. "abCode": 10000},
  747. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  748. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  749. "pushFrom": "flow_pool", "abCode": 10000},
  750. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  751. ]
  752. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  753. print(res)