recommend.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. import time
  2. import multiprocessing
  3. import traceback
  4. from datetime import datetime
  5. import config
  6. from log import Log
  7. from config import set_config
  8. from video_recall import PoolRecall
  9. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate
  10. from db_helper import RedisHelper
  11. import gevent
  12. from utils import FilterVideos
  13. import ast
  14. log_ = Log()
  15. config_ = set_config()
  16. def video_position_recommend(mid, uid, app_type, videos):
  17. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  18. # algo_type=algo_type, client_info=client_info)
  19. redis_helper = RedisHelper()
  20. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  21. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  22. if pos1_vids is not None:
  23. pos1_vids = ast.literal_eval(pos1_vids)
  24. if pos2_vids is not None:
  25. pos2_vids = ast.literal_eval(pos2_vids)
  26. pos1_vids = [] if pos1_vids is None else pos1_vids
  27. pos2_vids = [] if pos2_vids is None else pos2_vids
  28. pos1_vids = [int(i) for i in pos1_vids]
  29. pos2_vids = [int(i) for i in pos2_vids]
  30. filter_1 = FilterVideos(app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  31. filter_2 = FilterVideos(app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  32. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  33. gevent.joinall(t)
  34. filted_list = [i.get() for i in t]
  35. pos1_vids = filted_list[0]
  36. pos2_vids = filted_list[1]
  37. if pos1_vids is not None and len(pos1_vids) >0 :
  38. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  39. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  40. if pos2_vids is not None and len(pos2_vids) >0 :
  41. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  42. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  43. return videos[:10]
  44. def video_recommend(mid, uid, size, app_type, algo_type, client_info):
  45. """
  46. 首页线上推荐逻辑
  47. :param mid: mid type-string
  48. :param uid: uid type-string
  49. :param size: 请求视频数量 type-int
  50. :param app_type: 产品标识 type-int
  51. :param algo_type: 算法类型 type-string
  52. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  53. :return:
  54. """
  55. ab_code = config_.AB_CODE['initial']
  56. # ####### 多进程召回
  57. start_recall = time.time()
  58. # log_.info('====== recall')
  59. '''
  60. cores = multiprocessing.cpu_count()
  61. pool = multiprocessing.Pool(processes=cores)
  62. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  63. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  64. pool_list = [
  65. # rov召回池
  66. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  67. # 流量池
  68. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  69. ]
  70. recall_result_list = [p.get() for p in pool_list]
  71. pool.close()
  72. pool.join()
  73. '''
  74. recall_result_list = []
  75. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code, client_info=client_info)
  76. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  77. t = [gevent.spawn(pool_recall.rov_pool_recall, size), gevent.spawn(pool_recall.flow_pool_recall, size)]
  78. gevent.joinall(t)
  79. recall_result_list = [i.get() for i in t]
  80. end_recall = time.time()
  81. log_.info('mid: {}, uid: {}, recall: {}, execute time = {}ms'.format(
  82. mid, uid, recall_result_list, (end_recall - start_recall) * 1000))
  83. # ####### 排序
  84. start_rank = time.time()
  85. # log_.info('====== rank')
  86. data = {
  87. 'rov_pool_recall': recall_result_list[0],
  88. 'flow_pool_recall': recall_result_list[1]
  89. }
  90. rank_result = video_rank(data=data, size=size)
  91. end_rank = time.time()
  92. log_.info('mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  93. mid, uid, rank_result, (end_rank - start_rank) * 1000))
  94. if not rank_result:
  95. # 兜底策略
  96. # log_.info('====== bottom strategy')
  97. start_bottom = time.time()
  98. rank_result = bottom_strategy(size=size, app_type=app_type, ab_code=ab_code)
  99. end_bottom = time.time()
  100. log_.info('mid: {}, uid: {}, bottom strategy result: {}, execute time = {}ms'.format(
  101. mid, uid, rank_result, (end_bottom - start_bottom) * 1000))
  102. return rank_result, last_rov_recall_key
  103. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  104. """
  105. 对排序后的结果 按照AB实验进行对应的分组操作
  106. :param rank_result: 排序后的结果
  107. :param ab_code_list: 此次请求参与的 ab实验组
  108. :param app_type: 产品标识
  109. :param mid: mid
  110. :param uid: uid
  111. :param kwargs: 其他参数
  112. :return:
  113. """
  114. # ####### 视频宽高比AB实验
  115. # 对内容精选进行 视频宽高比分发实验
  116. if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  117. rank_result = video_rank_by_w_h_rate(videos=rank_result)
  118. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  119. app_type, mid, uid, rank_result))
  120. # 按position位置排序
  121. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  122. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  123. print('===========================')
  124. print(rank_result)
  125. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  126. app_type, mid, uid, rank_result))
  127. return rank_result
  128. def update_redis_data(result, app_type, mid, last_rov_recall_key):
  129. """
  130. 根据最终的排序结果更新相关redis数据
  131. :param result: 排序结果
  132. :param app_type: 产品标识
  133. :param mid: mid
  134. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  135. :return: None
  136. """
  137. # ####### redis数据刷新
  138. try:
  139. # log_.info('====== update redis')
  140. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  141. redis_helper = RedisHelper()
  142. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  143. preview_video_ids = [int(item['videoId']) for item in result]
  144. if preview_video_ids:
  145. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  146. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  147. log_.info('preview redis update success!')
  148. # 将此次获取的ROV召回池config_.K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  149. rov_recall_video = [item['videoId'] for item in result[:config_.K]
  150. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  151. if len(rov_recall_video) > 0:
  152. if not redis_helper.get_score_with_value(key_name=config_.UPDATE_ROV_KEY_NAME, value=rov_recall_video[-1]):
  153. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1])
  154. log_.info('last video redis update success!')
  155. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  156. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  157. if flow_recall_video:
  158. update_local_distribute_count(flow_recall_video)
  159. log_.info('update local distribute count success!')
  160. except Exception as e:
  161. log_.error("update redis data fail!")
  162. log_.error(traceback.format_exc())
  163. def update_local_distribute_count(videos):
  164. """
  165. 更新本地分发数
  166. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  167. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  168. :return:
  169. """
  170. try:
  171. redis_helper = RedisHelper()
  172. for item in videos:
  173. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  174. # 本地记录的分发数 - 1
  175. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  176. # if redis_helper.key_exists(key_name=key_name):
  177. # # 该视频本地有记录,本地记录的分发数 - 1
  178. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  179. # else:
  180. # # 该视频本地无记录,接口获取的分发数 - 1
  181. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  182. except Exception as e:
  183. log_.error('update_local_distribute_count error...')
  184. log_.error(traceback.format_exc())
  185. def video_homepage_recommend(mid, uid, size, app_type, algo_type, client_info):
  186. """
  187. 首页线上推荐逻辑
  188. :param mid: mid type-string
  189. :param uid: uid type-string
  190. :param size: 请求视频数量 type-int
  191. :param app_type: 产品标识 type-int
  192. :param algo_type: 算法类型 type-string
  193. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  194. :return:
  195. """
  196. # 简单召回 - 排序 - 兜底
  197. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  198. algo_type=algo_type, client_info=client_info)
  199. # ab-test
  200. result = ab_test_op(rank_result=rank_result,
  201. ab_code_list=[config_.AB_CODE['w_h_rate'], config_.AB_CODE['position_insert']],
  202. app_type=app_type, mid=mid, uid=uid)
  203. # redis数据刷新
  204. update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key)
  205. return result
  206. def video_relevant_recommend(video_id, mid, uid, size, app_type):
  207. """
  208. 相关推荐逻辑
  209. :param video_id: 相关推荐的头部视频id
  210. :param mid: mid type-string
  211. :param uid: uid type-string
  212. :param size: 请求视频数量 type-int
  213. :param app_type: 产品标识 type-int
  214. :return: videos type-list
  215. """
  216. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type, algo_type='', client_info=None)
  217. # 简单召回 - 排序 - 兜底
  218. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  219. algo_type='', client_info=None)
  220. # ab-test
  221. result = ab_test_op(rank_result=rank_result,
  222. ab_code_list=[config_.AB_CODE['w_h_rate'], config_.AB_CODE['position_insert']],
  223. app_type=app_type, mid=mid, uid=uid, video_id=video_id)
  224. # redis数据刷新
  225. update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key)
  226. return result
  227. if __name__ == '__main__':
  228. videos = [{'videoId': '12345', 'flowPool': '133#442#2', 'distributeCount': 10}]
  229. update_local_distribute_count(videos)