recommend.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. import json
  2. import time
  3. import multiprocessing
  4. import traceback
  5. import hashlib
  6. from datetime import datetime
  7. import config
  8. from log import Log
  9. from config import set_config
  10. from video_recall import PoolRecall
  11. from video_rank import video_rank, bottom_strategy, video_rank_by_w_h_rate, video_rank_with_old_video
  12. from db_helper import RedisHelper
  13. import gevent
  14. from utils import FilterVideos
  15. import ast
  16. log_ = Log()
  17. config_ = set_config()
  18. def relevant_video_top_recommend(app_type, mid, uid, head_vid, videos, size):
  19. """
  20. 相关推荐强插 运营给定置顶相关性视频
  21. :param app_type: 产品标识 type-int
  22. :param mid: mid
  23. :param uid: uid
  24. :param head_vid: 相关推荐头部视频id type-int
  25. :param videos: 当前相关推荐结果 type-list
  26. :param size: 返回视频个数 type-int
  27. :return: rank_result
  28. """
  29. # 获取头部视频对应的相关性视频
  30. key_name = '{}{}'.format(config_.RELEVANT_VIDEOS_WITH_OP_KEY_NAME, head_vid)
  31. redis_helper = RedisHelper()
  32. relevant_videos = redis_helper.get_data_from_redis(key_name=key_name)
  33. if relevant_videos is None:
  34. # 该视频没有指定的相关性视频
  35. return videos
  36. relevant_videos = json.loads(relevant_videos)
  37. # 按照指定顺序排序
  38. relevant_videos_sorted = sorted(relevant_videos, key=lambda x: x['order'], reverse=False)
  39. # 过滤
  40. relevant_video_ids = [int(item['recommend_vid']) for item in relevant_videos_sorted]
  41. filter_helper = FilterVideos(app_type=app_type, video_ids=relevant_video_ids, mid=mid, uid=uid)
  42. filtered_ids = filter_helper.filter_videos()
  43. if filtered_ids is None:
  44. return videos
  45. # 获取生效中的视频
  46. now = int(time.time())
  47. relevant_videos_in_effect = [
  48. {'videoId': int(item['recommend_vid']), 'pushFrom': config_.PUSH_FROM['relevant_video_op'],
  49. 'abCode': config_.AB_CODE['relevant_video_op']}
  50. for item in relevant_videos_sorted
  51. if item['start_time'] < now < item['finish_time'] and int(item['recommend_vid']) in filtered_ids
  52. ]
  53. if len(relevant_videos_in_effect) == 0:
  54. return videos
  55. # 与现有排序结果 进行合并重排
  56. # 获取现有排序结果中流量池视频 及其位置
  57. relevant_ids = [item['videoId'] for item in relevant_videos_in_effect]
  58. flow_pool_videos = []
  59. other_videos = []
  60. for i, item in enumerate(videos):
  61. if item.get('pushFrom', None) == config_.PUSH_FROM['flow_recall'] and item.get('videoId') not in relevant_ids:
  62. flow_pool_videos.append((i, item))
  63. elif item.get('videoId') not in relevant_ids:
  64. other_videos.append(item)
  65. else:
  66. continue
  67. # 重排,保持流量池视频位置不变
  68. rank_result = relevant_videos_in_effect + other_videos
  69. for i, item in flow_pool_videos:
  70. rank_result.insert(i, item)
  71. return rank_result[:size]
  72. def video_position_recommend(mid, uid, app_type, videos):
  73. # videos = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  74. # algo_type=algo_type, client_info=client_info)
  75. redis_helper = RedisHelper()
  76. pos1_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION1_KEY_NAME)
  77. pos2_vids = redis_helper.get_data_from_redis(config.BaseConfig.RECALL_POSITION2_KEY_NAME)
  78. if pos1_vids is not None:
  79. pos1_vids = ast.literal_eval(pos1_vids)
  80. if pos2_vids is not None:
  81. pos2_vids = ast.literal_eval(pos2_vids)
  82. pos1_vids = [] if pos1_vids is None else pos1_vids
  83. pos2_vids = [] if pos2_vids is None else pos2_vids
  84. pos1_vids = [int(i) for i in pos1_vids]
  85. pos2_vids = [int(i) for i in pos2_vids]
  86. filter_1 = FilterVideos(app_type=app_type, video_ids=pos1_vids, mid=mid, uid=uid)
  87. filter_2 = FilterVideos(app_type=app_type, video_ids=pos2_vids, mid=mid, uid=uid)
  88. t = [gevent.spawn(filter_1.filter_videos), gevent.spawn(filter_2.filter_videos)]
  89. gevent.joinall(t)
  90. filted_list = [i.get() for i in t]
  91. pos1_vids = filted_list[0]
  92. pos2_vids = filted_list[1]
  93. videos = positon_duplicate(pos1_vids, pos2_vids, videos)
  94. if pos1_vids is not None and len(pos1_vids) >0 :
  95. videos.insert(0, {'videoId': int(pos1_vids[0]), 'rovScore': 100,
  96. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  97. if pos2_vids is not None and len(pos2_vids) >0 :
  98. videos.insert(1, {'videoId': int(pos2_vids[0]), 'rovScore': 100,
  99. 'pushFrom': config_.PUSH_FROM['position_insert'], 'abCode': config_.AB_CODE['position_insert']})
  100. return videos[:10]
  101. def positon_duplicate(pos1_vids, pos2_vids, videos):
  102. s = set()
  103. if pos1_vids is not None and len(pos1_vids) >0:
  104. s.add(int(pos1_vids[0]))
  105. if pos2_vids is not None and len(pos2_vids) >0:
  106. s.add(int(pos2_vids[0]))
  107. l = []
  108. for item in videos:
  109. if item['videoId'] in s:
  110. continue
  111. else:
  112. l.append(item)
  113. return l
  114. def video_recommend(mid, uid, size, top_K, flow_pool_P, app_type, algo_type, client_info, expire_time=24*3600,
  115. ab_code=config_.AB_CODE['initial'], rule_key='', no_op_flag=False, old_video_index=-1):
  116. """
  117. 首页线上推荐逻辑
  118. :param mid: mid type-string
  119. :param uid: uid type-string
  120. :param size: 请求视频数量 type-int
  121. :param top_K: 保证topK为召回池视频 type-int
  122. :param flow_pool_P: size-top_K视频为流量池视频的概率 type-float
  123. :param app_type: 产品标识 type-int
  124. :param algo_type: 算法类型 type-string
  125. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  126. :param expire_time: 末位视频记录redis过期时间
  127. :param ab_code: AB实验code
  128. :return:
  129. """
  130. # ####### 多进程召回
  131. start_recall = time.time()
  132. # log_.info('====== recall')
  133. '''
  134. cores = multiprocessing.cpu_count()
  135. pool = multiprocessing.Pool(processes=cores)
  136. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code)
  137. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  138. pool_list = [
  139. # rov召回池
  140. pool.apply_async(pool_recall.rov_pool_recall, (size,)),
  141. # 流量池
  142. pool.apply_async(pool_recall.flow_pool_recall, (size,))
  143. ]
  144. recall_result_list = [p.get() for p in pool_list]
  145. pool.close()
  146. pool.join()
  147. '''
  148. recall_result_list = []
  149. pool_recall = PoolRecall(app_type=app_type, mid=mid, uid=uid, ab_code=ab_code,
  150. client_info=client_info, rule_key=rule_key, no_op_flag=no_op_flag)
  151. _, last_rov_recall_key, _ = pool_recall.get_video_last_idx()
  152. # 小时级实验
  153. if ab_code in [code for _, code in config_.AB_CODE['rank_by_h'].items()] + \
  154. [code for _, code in config_.AB_CODE['rank_by_24h'].items()]:
  155. t = [gevent.spawn(pool_recall.rov_pool_recall_by_h, size, expire_time),
  156. gevent.spawn(pool_recall.flow_pool_recall, size)]
  157. # 地域分组实验
  158. elif ab_code in [code for _, code in config_.AB_CODE['region_rank_by_h'].items()]:
  159. t = [gevent.spawn(pool_recall.rov_pool_recall_with_region, size, expire_time),
  160. gevent.spawn(pool_recall.flow_pool_recall, size)]
  161. # 最惊奇/老好看实验
  162. elif app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  163. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  164. gevent.spawn(pool_recall.flow_pool_recall_18_19, size)]
  165. # 天级实验
  166. elif ab_code in [code for _, code in config_.AB_CODE['rank_by_day'].items()]:
  167. t = [gevent.spawn(pool_recall.rov_pool_recall_by_day, size, expire_time),
  168. gevent.spawn(pool_recall.flow_pool_recall, size)]
  169. # 老视频实验
  170. # elif ab_code in [config_.AB_CODE['old_video']]:
  171. # t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  172. # gevent.spawn(pool_recall.flow_pool_recall, size),
  173. # gevent.spawn(pool_recall.old_videos_recall, size)]
  174. else:
  175. t = [gevent.spawn(pool_recall.rov_pool_recall, size, expire_time),
  176. gevent.spawn(pool_recall.flow_pool_recall, size)]
  177. gevent.joinall(t)
  178. recall_result_list = [i.get() for i in t]
  179. end_recall = time.time()
  180. log_.info('mid: {}, uid: {}, recall: {}, execute time = {}ms'.format(
  181. mid, uid, recall_result_list, (end_recall - start_recall) * 1000))
  182. # ####### 排序
  183. start_rank = time.time()
  184. # log_.info('====== rank')
  185. if app_type in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  186. if ab_code in [config_.AB_CODE['rov_rank_appType_18_19'], config_.AB_CODE['rov_rank_appType_19']]:
  187. data = {
  188. 'rov_pool_recall': recall_result_list[0],
  189. 'flow_pool_recall': recall_result_list[1]
  190. }
  191. else:
  192. data = {
  193. 'rov_pool_recall': recall_result_list[0],
  194. 'flow_pool_recall': []
  195. }
  196. else:
  197. data = {
  198. 'rov_pool_recall': recall_result_list[0],
  199. 'flow_pool_recall': recall_result_list[1]
  200. }
  201. rank_result = video_rank(data=data, size=size, top_K=top_K, flow_pool_P=flow_pool_P)
  202. # 老视频实验
  203. # if ab_code in [config_.AB_CODE['old_video']]:
  204. # rank_result = video_rank_with_old_video(rank_result=rank_result, old_video_recall=recall_result_list[2],
  205. # size=size, top_K=top_K, old_video_index=old_video_index)
  206. end_rank = time.time()
  207. log_.info('mid: {}, uid: {}, rank_result: {}, execute time = {}ms'.format(
  208. mid, uid, rank_result, (end_rank - start_rank) * 1000))
  209. if not rank_result:
  210. # 兜底策略
  211. # log_.info('====== bottom strategy')
  212. start_bottom = time.time()
  213. rank_result = bottom_strategy(size=size, app_type=app_type, ab_code=ab_code)
  214. end_bottom = time.time()
  215. log_.info('mid: {}, uid: {}, bottom strategy result: {}, execute time = {}ms'.format(
  216. mid, uid, rank_result, (end_bottom - start_bottom) * 1000))
  217. return rank_result, last_rov_recall_key
  218. def ab_test_op(rank_result, ab_code_list, app_type, mid, uid, **kwargs):
  219. """
  220. 对排序后的结果 按照AB实验进行对应的分组操作
  221. :param rank_result: 排序后的结果
  222. :param ab_code_list: 此次请求参与的 ab实验组
  223. :param app_type: 产品标识
  224. :param mid: mid
  225. :param uid: uid
  226. :param kwargs: 其他参数
  227. :return:
  228. """
  229. # ####### 视频宽高比AB实验
  230. # 对内容精选进行 视频宽高比分发实验
  231. # if config_.AB_CODE['w_h_rate'] in ab_code_list and app_type in config_.AB_TEST.get('w_h_rate', []):
  232. # rank_result = video_rank_by_w_h_rate(videos=rank_result)
  233. # log_.info('app_type: {}, mid: {}, uid: {}, rank_by_w_h_rate_result: {}'.format(
  234. # app_type, mid, uid, rank_result))
  235. # 按position位置排序
  236. if config_.AB_CODE['position_insert'] in ab_code_list and app_type in config_.AB_TEST.get('position_insert', []):
  237. rank_result = video_position_recommend(mid, uid, app_type, rank_result)
  238. print('===========================')
  239. print(rank_result)
  240. log_.info('app_type: {}, mid: {}, uid: {}, rank_by_position_insert_result: {}'.format(
  241. app_type, mid, uid, rank_result))
  242. # 相关推荐强插
  243. # if config_.AB_CODE['relevant_video_op'] in ab_code_list \
  244. # and app_type in config_.AB_TEST.get('relevant_video_op', []):
  245. # head_vid = kwargs['head_vid']
  246. # size = kwargs['size']
  247. # rank_result = relevant_video_top_recommend(
  248. # app_type=app_type, mid=mid, uid=uid, head_vid=head_vid, videos=rank_result, size=size
  249. # )
  250. # log_.info('app_type: {}, mid: {}, uid: {}, head_vid: {}, rank_by_relevant_video_op_result: {}'.format(
  251. # app_type, mid, uid, head_vid, rank_result))
  252. return rank_result
  253. def update_redis_data(result, app_type, mid, last_rov_recall_key, top_K, expire_time=24*3600):
  254. """
  255. 根据最终的排序结果更新相关redis数据
  256. :param result: 排序结果
  257. :param app_type: 产品标识
  258. :param mid: mid
  259. :param last_rov_recall_key: 用户上一次在rov召回池对应的位置 redis key
  260. :param top_K: 保证topK为召回池视频 type-int
  261. :param expire_time: 末位视频记录redis过期时间
  262. :return: None
  263. """
  264. # ####### redis数据刷新
  265. try:
  266. # log_.info('====== update redis')
  267. if mid:
  268. # mid为空时,不做预曝光和定位数据更新
  269. # 预曝光数据同步刷新到Redis, 过期时间为0.5h
  270. redis_helper = RedisHelper()
  271. preview_key_name = config_.PREVIEW_KEY_PREFIX + '{}.{}'.format(app_type, mid)
  272. preview_video_ids = [int(item['videoId']) for item in result]
  273. if preview_video_ids:
  274. # log_.error('key_name = {} \n values = {}'.format(preview_key_name, tuple(preview_video_ids)))
  275. redis_helper.add_data_with_set(key_name=preview_key_name, values=tuple(preview_video_ids), expire_time=30 * 60)
  276. log_.info('preview redis update success!')
  277. # 将此次获取的ROV召回池top_K末位视频id同步刷新到Redis中,方便下次快速定位到召回位置,过期时间为1天
  278. rov_recall_video = [item['videoId'] for item in result[:top_K]
  279. if item['pushFrom'] == config_.PUSH_FROM['rov_recall']]
  280. if len(rov_recall_video) > 0:
  281. if app_type == config_.APP_TYPE['APP']:
  282. key_name = config_.UPDATE_ROV_KEY_NAME_APP
  283. else:
  284. key_name = config_.UPDATE_ROV_KEY_NAME
  285. if not redis_helper.get_score_with_value(key_name=key_name, value=rov_recall_video[-1]):
  286. redis_helper.set_data_to_redis(key_name=last_rov_recall_key, value=rov_recall_video[-1],
  287. expire_time=expire_time)
  288. log_.info('last video redis update success!')
  289. # 将此次分发的流量池视频,对 本地分发数-1 进行记录
  290. if app_type not in [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]:
  291. flow_recall_video = [item for item in result if item['pushFrom'] == config_.PUSH_FROM['flow_recall']]
  292. if flow_recall_video:
  293. update_local_distribute_count(flow_recall_video)
  294. log_.info('update local distribute count success!')
  295. except Exception as e:
  296. log_.error("update redis data fail!")
  297. log_.error(traceback.format_exc())
  298. def update_local_distribute_count(videos):
  299. """
  300. 更新本地分发数
  301. :param videos: 视频列表 type-list [{'videoId':'', 'flowPool':'', 'distributeCount': '',
  302. 'rovScore': '', 'pushFrom': 'flow_pool', 'abCode': self.ab_code}, ....]
  303. :return:
  304. """
  305. try:
  306. redis_helper = RedisHelper()
  307. for item in videos:
  308. key_name = '{}{}.{}'.format(config_.LOCAL_DISTRIBUTE_COUNT_PREFIX, item['videoId'], item['flowPool'])
  309. # 本地记录的分发数 - 1
  310. redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  311. # if redis_helper.key_exists(key_name=key_name):
  312. # # 该视频本地有记录,本地记录的分发数 - 1
  313. # redis_helper.decr_key(key_name=key_name, amount=1, expire_time=5 * 60)
  314. # else:
  315. # # 该视频本地无记录,接口获取的分发数 - 1
  316. # redis_helper.incr_key(key_name=key_name, amount=int(item['distributeCount']) - 1, expire_time=5 * 60)
  317. except Exception as e:
  318. log_.error('update_local_distribute_count error...')
  319. log_.error(traceback.format_exc())
  320. def get_recommend_params(ab_exp_info):
  321. """根据实验分组给定对应的推荐参数"""
  322. top_K = config_.K
  323. flow_pool_P = config_.P
  324. # 不获取人工干预数据标记
  325. no_op_flag = False
  326. if not ab_exp_info:
  327. ab_code = config_.AB_CODE['initial']
  328. expire_time = 24 * 3600
  329. rule_key = config_.RULE_KEY['initial']
  330. old_video_index = -1
  331. else:
  332. ab_exp_code_list = []
  333. config_value_dict = {}
  334. for _, item in ab_exp_info.items():
  335. if not item:
  336. continue
  337. for ab_item in item:
  338. ab_exp_code = ab_item.get('abExpCode', None)
  339. if not ab_exp_code:
  340. continue
  341. ab_exp_code_list.append(str(ab_exp_code))
  342. config_value_dict[str(ab_exp_code)] = ab_item.get('configValue', None)
  343. # 推荐条数 10->4 实验
  344. # if config_.AB_EXP_CODE['rec_size_home'] in ab_exp_code_list:
  345. # config_value = config_value_dict.get(config_.AB_EXP_CODE['rec_size_home'], None)
  346. # if config_value:
  347. # config_value = eval(str(config_value))
  348. # else:
  349. # config_value = {}
  350. # log_.info(f'config_value: {config_value}, type: {type(config_value)}')
  351. # size = int(config_value.get('size', 4))
  352. # top_K = int(config_value.get('K', 3))
  353. # flow_pool_P = float(config_value.get('P', 0.3))
  354. # else:
  355. # size = size
  356. # top_K = config_.K
  357. # flow_pool_P = config_.P
  358. # 算法实验相对对照组
  359. if config_.AB_EXP_CODE['ab_initial'] in ab_exp_code_list:
  360. ab_code = config_.AB_CODE['ab_initial']
  361. expire_time = 24 * 3600
  362. rule_key = config_.RULE_KEY['initial']
  363. no_op_flag = True
  364. # 小时级更新-规则1 实验
  365. elif config_.AB_EXP_CODE['rule_rank1'] in ab_exp_code_list:
  366. ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank1')
  367. expire_time = 3600
  368. rule_key = config_.RULE_KEY['rule_rank1']
  369. no_op_flag = True
  370. # elif config_.AB_EXP_CODE['rule_rank2'] in ab_exp_code_list:
  371. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank2')
  372. # expire_time = 3600
  373. # rule_key = config_.RULE_KEY['rule_rank2']
  374. elif config_.AB_EXP_CODE['rule_rank3'] in ab_exp_code_list:
  375. ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank3')
  376. expire_time = 3600
  377. rule_key = config_.RULE_KEY['rule_rank3']
  378. no_op_flag = True
  379. # elif config_.AB_EXP_CODE['rule_rank4'] in ab_exp_code_list:
  380. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank4')
  381. # expire_time = 3600
  382. # rule_key = config_.RULE_KEY['rule_rank4']
  383. # elif config_.AB_EXP_CODE['rule_rank5'] in ab_exp_code_list:
  384. # ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank5')
  385. # expire_time = 3600
  386. # rule_key = config_.RULE_KEY['rule_rank5']
  387. # elif config_.AB_EXP_CODE['day_rule_rank1'] in ab_exp_code_list:
  388. # ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank1')
  389. # expire_time = 24 * 3600
  390. # rule_key = config_.RULE_KEY_DAY['day_rule_rank1']
  391. # no_op_flag = True
  392. elif config_.AB_EXP_CODE['rule_rank6'] in ab_exp_code_list:
  393. ab_code = config_.AB_CODE['rank_by_h'].get('rule_rank6')
  394. expire_time = 3600
  395. rule_key = config_.RULE_KEY['rule_rank6']
  396. no_op_flag = True
  397. elif config_.AB_EXP_CODE['day_rule_rank2'] in ab_exp_code_list:
  398. ab_code = config_.AB_CODE['rank_by_day'].get('day_rule_rank2')
  399. expire_time = 24 * 3600
  400. rule_key = config_.RULE_KEY_DAY['day_rule_rank2']
  401. no_op_flag = True
  402. elif config_.AB_EXP_CODE['region_rule_rank1'] in ab_exp_code_list:
  403. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank1')
  404. expire_time = 3600
  405. rule_key = config_.RULE_KEY_REGION['region_rule_rank1']
  406. no_op_flag = True
  407. elif config_.AB_EXP_CODE['24h_rule_rank1'] in ab_exp_code_list:
  408. ab_code = config_.AB_CODE['rank_by_24h'].get('24h_rule_rank1')
  409. expire_time = 3600
  410. rule_key = config_.RULE_KEY_24H['24h_rule_rank1']
  411. no_op_flag = True
  412. elif config_.AB_EXP_CODE['region_rule_rank2'] in ab_exp_code_list:
  413. ab_code = config_.AB_CODE['region_rank_by_h'].get('region_rule_rank2')
  414. expire_time = 3600
  415. rule_key = config_.RULE_KEY_REGION['region_rule_rank2']
  416. no_op_flag = True
  417. else:
  418. ab_code = config_.AB_CODE['initial']
  419. expire_time = 24 * 3600
  420. rule_key = config_.RULE_KEY['initial']
  421. # 老好看视频 / 票圈最惊奇 首页/相关推荐逻辑更新实验
  422. if config_.AB_EXP_CODE['rov_rank_appType_18_19'] in ab_exp_code_list:
  423. ab_code = config_.AB_CODE['rov_rank_appType_18_19']
  424. expire_time = 3600
  425. flow_pool_P = config_.P_18_19
  426. no_op_flag = True
  427. elif config_.AB_EXP_CODE['rov_rank_appType_19'] in ab_exp_code_list:
  428. ab_code = config_.AB_CODE['rov_rank_appType_19']
  429. expire_time = 3600
  430. top_K = 1
  431. flow_pool_P = config_.P_18_19
  432. no_op_flag = True
  433. # 老视频实验
  434. if config_.AB_EXP_CODE['old_video'] in ab_exp_code_list:
  435. ab_code = config_.AB_CODE['old_video']
  436. no_op_flag = True
  437. old_video_index = 2
  438. else:
  439. old_video_index = -1
  440. return top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index
  441. def video_homepage_recommend(mid, uid, size, app_type, algo_type, client_info, ab_exp_info):
  442. """
  443. 首页线上推荐逻辑
  444. :param mid: mid type-string
  445. :param uid: uid type-string
  446. :param size: 请求视频数量 type-int
  447. :param app_type: 产品标识 type-int
  448. :param algo_type: 算法类型 type-string
  449. :param client_info: 用户位置信息 {"country": "国家", "province": "省份", "city": "城市"}
  450. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  451. :return:
  452. """
  453. # 对 vlog 切换10%的流量做实验
  454. # 对mid进行哈希
  455. # hash_mid = hashlib.md5(mid.encode('utf-8')).hexdigest()
  456. # if app_type in config_.AB_TEST['rank_by_h'] and hash_mid[-1:] in ['8', '0', 'a', 'b']:
  457. # # 简单召回 - 排序 - 兜底
  458. # rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, size=size, app_type=app_type,
  459. # algo_type=algo_type, client_info=client_info,
  460. # expire_time=3600,
  461. # ab_code=config_.AB_CODE['rank_by_h'])
  462. # # ab-test
  463. # result = ab_test_op(rank_result=rank_result,
  464. # ab_code_list=[config_.AB_CODE['position_insert']],
  465. # app_type=app_type, mid=mid, uid=uid)
  466. # # redis数据刷新
  467. # update_redis_data(result=result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  468. # expire_time=3600)
  469. if app_type == config_.APP_TYPE['APP']:
  470. # 票圈视频APP
  471. top_K = config_.K
  472. flow_pool_P = config_.P
  473. # 简单召回 - 排序 - 兜底
  474. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, app_type=app_type,
  475. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  476. algo_type=algo_type, client_info=client_info,
  477. expire_time=12 * 3600)
  478. # ab-test
  479. # result = ab_test_op(rank_result=rank_result,
  480. # ab_code_list=[config_.AB_CODE['position_insert']],
  481. # app_type=app_type, mid=mid, uid=uid)
  482. # redis数据刷新
  483. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  484. top_K=top_K, expire_time=12 * 3600)
  485. else:
  486. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  487. get_recommend_params(ab_exp_info=ab_exp_info)
  488. # 简单召回 - 排序 - 兜底
  489. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, app_type=app_type,
  490. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  491. algo_type=algo_type, client_info=client_info,
  492. ab_code=ab_code, expire_time=expire_time,
  493. rule_key=rule_key, no_op_flag=no_op_flag,
  494. old_video_index=old_video_index)
  495. # ab-test
  496. # result = ab_test_op(rank_result=rank_result,
  497. # ab_code_list=[config_.AB_CODE['position_insert']],
  498. # app_type=app_type, mid=mid, uid=uid)
  499. # redis数据刷新
  500. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  501. top_K=top_K)
  502. return rank_result
  503. def video_relevant_recommend(video_id, mid, uid, size, app_type, ab_exp_info, client_info):
  504. """
  505. 相关推荐逻辑
  506. :param video_id: 相关推荐的头部视频id
  507. :param mid: mid type-string
  508. :param uid: uid type-string
  509. :param size: 请求视频数量 type-int
  510. :param app_type: 产品标识 type-int
  511. :param ab_exp_info: ab实验分组参数 [{"expItemId":1, "configValue":{"size":4, "K":3, ...}}, ...]
  512. :return: videos type-list
  513. """
  514. top_K, flow_pool_P, ab_code, rule_key, expire_time, no_op_flag, old_video_index = \
  515. get_recommend_params(ab_exp_info=ab_exp_info)
  516. # 简单召回 - 排序 - 兜底
  517. rank_result, last_rov_recall_key = video_recommend(mid=mid, uid=uid, app_type=app_type,
  518. size=size, top_K=top_K, flow_pool_P=flow_pool_P,
  519. algo_type='', client_info=client_info,
  520. ab_code=ab_code, expire_time=expire_time,
  521. rule_key=rule_key, no_op_flag=no_op_flag,
  522. old_video_index=old_video_index)
  523. # ab-test
  524. # result = ab_test_op(rank_result=rank_result,
  525. # ab_code_list=[config_.AB_CODE['position_insert'], config_.AB_CODE['relevant_video_op']],
  526. # app_type=app_type, mid=mid, uid=uid, head_vid=video_id, size=size)
  527. # redis数据刷新
  528. update_redis_data(result=rank_result, app_type=app_type, mid=mid, last_rov_recall_key=last_rov_recall_key,
  529. top_K=top_K)
  530. return rank_result
  531. if __name__ == '__main__':
  532. videos = [
  533. {"videoId": 10136461, "rovScore": 99.971, "pushFrom": "recall_pool", "abCode": 10000},
  534. {"videoId": 10239014, "rovScore": 99.97, "pushFrom": "recall_pool", "abCode": 10000},
  535. {"videoId": 9851154, "rovScore": 99.969, "pushFrom": "recall_pool", "abCode": 10000},
  536. {"videoId": 10104347, "rovScore": 99.968, "pushFrom": "recall_pool", "abCode": 10000},
  537. {"videoId": 10141507, "rovScore": 99.967, "pushFrom": "recall_pool", "abCode": 10000},
  538. {"videoId": 10292817, "flowPool": "2#6#2#1641780979606", "rovScore": 53.926690610816486,
  539. "pushFrom": "flow_pool", "abCode": 10000},
  540. {"videoId": 10224932, "flowPool": "2#5#1#1641800279644", "rovScore": 53.47890460059617, "pushFrom": "flow_pool",
  541. "abCode": 10000},
  542. {"videoId": 9943255, "rovScore": 99.966, "pushFrom": "recall_pool", "abCode": 10000},
  543. {"videoId": 10282970, "flowPool": "2#5#1#1641784814103", "rovScore": 52.682815076325575,
  544. "pushFrom": "flow_pool", "abCode": 10000},
  545. {"videoId": 10282205, "rovScore": 99.965, "pushFrom": "recall_pool", "abCode": 10000}
  546. ]
  547. res = relevant_video_top_recommend(app_type=4, mid='', uid=1111, head_vid=123, videos=videos, size=10)
  548. print(res)