123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- import time
- import pandas as pd
- import multiprocessing
- import math
- import traceback
- from functools import reduce
- from odps import ODPS
- from threading import Timer
- from datetime import datetime, timedelta
- from get_data import get_data_from_odps
- from db_helper import RedisHelper
- from my_utils import filter_video_status, check_table_partition_exits, filter_video_status_app, \
- request_post, send_msg_to_feishu
- from my_config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- features = [
- 'apptype',
- 'videoid',
- 'preview人数', # 过去24h预曝光人数
- 'view人数', # 过去24h曝光人数
- 'play人数', # 过去24h播放人数
- 'share人数', # 过去24h分享人数
- '回流人数', # 过去24h分享,过去24h回流人数
- 'preview次数', # 过去24h预曝光次数
- 'view次数', # 过去24h曝光次数
- 'play次数', # 过去24h播放次数
- 'share次数', # 过去24h分享次数
- 'platform_return',
- 'platform_preview',
- 'platform_preview_total',
- 'platform_show',
- 'platform_show_total',
- 'platform_view',
- 'platform_view_total',
- ]
- def get_rov_redis_key(now_date):
- # 获取rov模型结果存放key
- redis_helper = RedisHelper()
- now_dt = datetime.strftime(now_date, '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
- if not redis_helper.key_exists(key_name=key_name):
- pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
- return key_name
- def h_data_check(project, table, now_date, now_h):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- # 23点开始到8点之前(不含8点),全部用22点生成那个列表
- if now_h == 23:
- dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H')
- elif now_h < 8:
- dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22"
- else:
- dt = datetime.strftime(now_date, '%Y%m%d%H')
- check_res = check_table_partition_exits(date=dt, project=project, table=table)
- if check_res:
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- else:
- data_count = 0
- except Exception as e:
- data_count = 0
- return data_count
- def get_feature_data(now_date, now_h, project, table):
- """获取特征数据"""
- # 23点开始到8点之前(不含8点),全部用22点生成那个列表
- if now_h == 23:
- dt = datetime.strftime(now_date - timedelta(hours=1), '%Y%m%d%H')
- elif now_h < 8:
- dt = f"{datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')}22"
- else:
- dt = datetime.strftime(now_date, '%Y%m%d%H')
- log_.info({'feature_dt': dt})
- # dt = '20220425'
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def cal_score1(df):
- # score1计算公式: score = 回流人数/(view人数+10000)
- df = df.fillna(0)
- df['score'] = df['回流人数'] / (df['view人数'] + 1000)
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score2(df, param):
- # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100)
- df = df.fillna(0)
- if param.get('view_type', None) == 'video-show':
- df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
- elif param.get('view_type', None) == 'preview':
- df['share_rate'] = df['share次数'] / (df['preview人数'] + 1000)
- else:
- df['share_rate'] = df['share次数'] / (df['view人数'] + 1000)
- df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
- df['score'] = df['share_rate'] + 0.01 * df['back_rate']
- df['platform_return_rate'] = df['platform_return'] / df['回流人数']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score(df, param):
- # score计算公式: score1 = share次数/(view+1000)+0.01*return/(share次数+100)
- # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = 0.3 * score1 + 0.7 * K2
- df = df.fillna(0)
- if param.get('view_type', None) == 'video-show':
- df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
- df['ctr'] = df['play人数'] / (df['platform_show'] + 1000)
- elif param.get('view_type', None) == 'preview':
- df['share_rate'] = df['share次数'] / (df['preview人数'] + 1000)
- df['ctr'] = df['play人数'] / (df['preview人数'] + 1000)
- else:
- df['share_rate'] = df['share次数'] / (df['platform_show'] + 1000)
- df['ctr'] = df['play人数'] / (df['platform_show'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
- df['platform_return_rate'] = df['platform_return'] / df['回流人数']
- df['score1'] = df['share_rate'] + 0.01 * df['back_rate']
- click_score_rate = param.get('click_score_rate', None)
- back_score_rate = param.get('click_score_rate', None)
- if click_score_rate is not None:
- df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
- elif back_score_rate is not None:
- df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
- else:
- df['score'] = df['score1']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def video_rank_h(df, now_date, now_h, rule_key, param, data_key, notify_backend):
- """
- 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
- :param df:
- :param now_date:
- :param now_h:
- :param rule_key: 天级规则数据进入条件
- :param param: 天级规则数据进入条件参数
- :param data_key: 使用数据标识
- :param notify_backend: 是否同步给后端标识
- :return:
- """
- redis_helper = RedisHelper()
- log_.info(f"videos_count = {len(df)}")
- # videoid重复时,保留分值高
- df = df.sort_values(by=['score'], ascending=False)
- df = df.drop_duplicates(subset=['videoid'], keep='first')
- df['videoid'] = df['videoid'].astype(int)
- # 获取符合进入召回源条件的视频
- return_count = param.get('return_count')
- if return_count:
- day_recall_df = df[df['回流人数'] > return_count]
- else:
- day_recall_df = df
- platform_return_rate = param.get('platform_return_rate', 0)
- day_recall_df = day_recall_df[day_recall_df['platform_return_rate'] > platform_return_rate]
- day_recall_videos = day_recall_df['videoid'].to_list()
- log_.info(f'h_by24h_recall videos count = {len(day_recall_videos)}')
- # 视频状态过滤
- if data_key in ['data7', ]:
- filtered_videos = filter_video_status_app(day_recall_videos)
- else:
- filtered_videos = filter_video_status(day_recall_videos)
- # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
- # 写入对应的redis
- now_dt = datetime.strftime(now_date, '%Y%m%d')
- day_video_ids = []
- day_recall_result = {}
- # json_data = []
- for video_id in filtered_videos:
- score = day_recall_df[day_recall_df['videoid'] == video_id]['score']
- day_recall_result[int(video_id)] = float(score)
- day_video_ids.append(int(video_id))
- # json_data.append({'videoId': video_id, 'rovScore': float(score)})
- h_24h_recall_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{rule_key}:{now_dt}:{now_h}"
- # log_.info("h_24h_recall_key_name:redis:{}".format(h_24h_recall_key_name))
- if len(day_recall_result) > 0:
- log_.info(f"count = {len(day_recall_result)}, key = {h_24h_recall_key_name}")
- redis_helper.add_data_with_zset(key_name=h_24h_recall_key_name, data=day_recall_result, expire_time=2 * 3600)
- # 清空线上过滤应用列表
- # redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{app_type}.{data_key}.{rule_key}")
- # 去重筛选结果,保留剩余数据并写入Redis
- all_videos = df['videoid'].to_list()
- log_.info(f'h_by24h_recall all videos count = {len(all_videos)}')
- # 视频状态过滤
- st_time = time.time()
- if data_key in ['data7', ]:
- all_filtered_videos = filter_video_status_app(all_videos)
- else:
- all_filtered_videos = filter_video_status(all_videos)
- log_.info(f'all_filtered_videos count = {len(all_filtered_videos)}, param = {param}, execute_time = {int(time.time() - st_time)*1000}ms')
- # 与筛选结果去重
- other_videos = [video for video in all_filtered_videos if video not in day_video_ids]
- log_.info(f'other_videos count = {len(other_videos)}')
- # 写入对应的redis
- other_24h_recall_result = {}
- json_data = []
- for video_id in other_videos:
- score = df[df['videoid'] == video_id]['score']
- other_24h_recall_result[int(video_id)] = float(score)
- json_data.append({'videoId': video_id, 'rovScore': float(score)})
- # other_h_24h_recall_key_name = \
- # f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{app_type}:{data_key}:{rule_key}:{now_dt}:{now_h}"
- other_h_24h_recall_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:{rule_key}:{now_dt}:{now_h}"
- if len(other_24h_recall_result) > 0:
- log_.info(f"count = {len(other_24h_recall_result)}")
- redis_helper.add_data_with_zset(key_name=other_h_24h_recall_key_name, data=other_24h_recall_result,
- expire_time=2 * 3600)
- # 通知后端更新兜底视频数据
- if notify_backend is True:
- log_.info('json_data count = {}'.format(len(json_data[:5000])))
- # log_.info(f"json_data = {json_data}")
- result = request_post(request_url=config_.NOTIFY_BACKEND_updateFallBackVideoList_URL,
- request_data={'videos': json_data[:5000]})
- if result is None:
- log_.error('notify backend updateFallBackVideoList fail!')
- elif result['code'] == 0:
- log_.info('notify backend updateFallBackVideoList success!')
- else:
- log_.error('notify backend updateFallBackVideoList fail!')
- # 去重更新rov模型结果,并另存为redis中
- # initial_data_dup = {}
- # for video_id, score in initial_data:
- # if int(video_id) not in day_video_ids:
- # initial_data_dup[int(video_id)] = score
- # log_.info(f"initial data dup count = {len(initial_data_dup)}")
- #
- # initial_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H}{rule_key}.{now_dt}.{now_h}"
- # if len(initial_data_dup) > 0:
- # redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
- def merge_df(df_left, df_right):
- """
- df按照videoid 合并,对应特征求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid']
- for feature in features:
- if feature in ['apptype', 'videoid']:
- continue
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- feature_list.append(feature)
- return df_merged[feature_list]
- def merge_df_with_score(df_left, df_right):
- """
- df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid', '回流人数', 'platform_return', 'score']
- for feature in feature_list[1:]:
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- return df_merged[feature_list]
- def process_with_param(param, data_params_item, rule_params_item, feature_df, now_date, now_h):
- log_.info(f"param = {param} start...")
- score_df_list = []
- notify_backend = param.get('notify_backend', False)
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- # cal_score_func = rule_param.get('cal_score_func', 1)
- merge_func = rule_param.get('merge_func', 1)
- if merge_func == 2:
- for apptype, weight in data_param.items():
- df = feature_df[feature_df['apptype'] == apptype]
- # 计算score
- score_df = cal_score(df=df, param=rule_param)
- score_df['score'] = score_df['score'] * weight
- score_df_list.append(score_df)
- # 分数合并
- df_merged = reduce(merge_df_with_score, score_df_list)
- # 更新平台回流比
- df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['回流人数']
- video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
- rule_key=rule_key, param=rule_param, data_key=data_key,
- notify_backend=notify_backend)
- else:
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
- df_merged = reduce(merge_df, df_list)
- score_df = cal_score(df=df_merged, param=rule_param)
- video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
- rule_key=rule_key, param=rule_param, data_key=data_key,
- notify_backend=notify_backend)
- log_.info(f"param = {param} end!")
- def rank_by_h(now_date, now_h, rule_params, project, table):
- # 获取特征数据
- feature_df = get_feature_data(now_date=now_date, now_h=now_h, project=project, table=table)
- feature_df['apptype'] = feature_df['apptype'].astype(int)
- # rank
- data_params_item = rule_params.get('data_params')
- rule_params_item = rule_params.get('rule_params')
- """
- for param in rule_params.get('params_list'):
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
- df_merged = reduce(merge_df, df_list)
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- # 计算score
- cal_score_func = rule_param.get('cal_score_func', 1)
- if cal_score_func == 2:
- score_df = cal_score2(df=df_merged, param=rule_param)
- else:
- score_df = cal_score1(df=df_merged)
- video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
- rule_key=rule_key, param=rule_param, data_key=data_key)
- """
- params_list = rule_params.get('params_list')
- pool = multiprocessing.Pool(processes=len(params_list))
- for param in params_list:
- pool.apply_async(
- func=process_with_param,
- args=(param, data_params_item, rule_params_item, feature_df, now_date, now_h)
- )
- pool.close()
- pool.join()
- # for param in rule_params.get('params_list'):
- # score_df_list = []
- # notify_backend = param.get('notify_backend', False)
- # data_key = param.get('data')
- # data_param = data_params_item.get(data_key)
- # log_.info(f"data_key = {data_key}, data_param = {data_param}")
- # rule_key = param.get('rule')
- # rule_param = rule_params_item.get(rule_key)
- # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- # # cal_score_func = rule_param.get('cal_score_func', 1)
- # merge_func = rule_param.get('merge_func', 1)
- #
- # if merge_func == 2:
- # for apptype, weight in data_param.items():
- # df = feature_df[feature_df['apptype'] == apptype]
- # # 计算score
- # score_df = cal_score(df=df, param=rule_param)
- # score_df['score'] = score_df['score'] * weight
- # score_df_list.append(score_df)
- # # 分数合并
- # df_merged = reduce(merge_df_with_score, score_df_list)
- # # 更新平台回流比
- # df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['回流人数']
- # video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
- # rule_key=rule_key, param=rule_param, data_key=data_key,
- # notify_backend=notify_backend)
- # else:
- # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
- # df_merged = reduce(merge_df, df_list)
- # score_df = cal_score(df=df_merged, param=rule_param)
- # video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
- # rule_key=rule_key, param=rule_param, data_key=data_key,
- # notify_backend=notify_backend)
- # # to-csv
- # score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- # score_df.to_csv(f'./data/{score_filename}')
- # # to-logs
- # log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
- # "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
- # "rule_key": key,
- # # "score_df": score_df[['videoid', 'score']]
- # })
- def h_rank_bottom(now_date, now_h, rule_params):
- """未按时更新数据,用模型召回数据作为当前的数据"""
- redis_helper = RedisHelper()
- if now_h == 0:
- redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
- redis_h = 23
- else:
- redis_dt = datetime.strftime(now_date, '%Y%m%d')
- redis_h = now_h - 1
- key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER]
- for param in rule_params.get('params_list'):
- data_key = param.get('data')
- rule_key = param.get('rule')
- log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
- for key_prefix in key_prefix_list:
- key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- if initial_data is None:
- initial_data = []
- final_data = dict()
- for video_id, score in initial_data:
- final_data[video_id] = score
- # 存入对应的redis
- final_key_name = \
- f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
- """
- for app_type, params in rule_params.items():
- log_.info(f"app_type = {app_type}")
- for param in params.get('params_list'):
- data_key = param.get('data')
- rule_key = param.get('rule')
- log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
- for key_prefix in key_prefix_list:
- key_name = f"{key_prefix}{app_type}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- if initial_data is None:
- initial_data = []
- final_data = dict()
- for video_id, score in initial_data:
- final_data[video_id] = score
- # 存入对应的redis
- final_key_name = \
- f"{key_prefix}{app_type}:{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
- # 清空线上过滤应用列表
- # redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{app_type}.{data_key}.{rule_key}")
- """
- def h_timer_check():
- try:
- project = config_.PROJECT_24H_APP_TYPE
- table = config_.TABLE_24H_APP_TYPE
- rule_params = config_.RULE_PARAMS_24H_APP_TYPE
- now_date = datetime.today()
- log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
- now_min = datetime.now().minute
- now_h = datetime.now().hour
- redis_helper = RedisHelper()
- # 查看当前天级更新的数据是否已准备好
- h_data_count = h_data_check(project=project, table=table, now_date=now_date, now_h=now_h)
- if now_h == 23 or now_h < 8:
- log_.info(f'now_h = {now_h} use bottom data!')
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
- log_.info(f"24h_data end!")
- redis_helper.set_data_to_redis(
- key_name=f"{config_.RULE_24H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
- )
- log_.info(f"rule_24h_data status update to '1' finished!")
- elif h_data_count > 0:
- log_.info(f'h_by24h_data_count = {h_data_count}')
- # 数据准备好,进行更新
- rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
- log_.info(f"24h_data end!")
- redis_helper.set_data_to_redis(
- key_name=f"{config_.RULE_24H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
- )
- log_.info(f"rule_24h_data status update to '1' finished!")
- elif now_min > 40:
- log_.info('h_by24h_recall data is None, use bottom data!')
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
- log_.info(f"24h_data end!")
- redis_helper.set_data_to_redis(
- key_name=f"{config_.RULE_24H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
- )
- log_.info(f"rule_24h_data status update to '1' finished!")
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, h_timer_check).start()
- except Exception as e:
- log_.error(f"不区分地域24h数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域24h数据更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
- if __name__ == '__main__':
- log_.info(f"24h_data start...")
- h_timer_check()
|