123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- # -*- coding: utf-8 -*-
- # @ModuleName: rule_rank_h_18_19
- # @Author: Liqian
- # @Time: 2022/4/21 下午4:31
- # @Software: PyCharm
- import time
- import datetime
- import pandas as pd
- import math
- import random
- from odps import ODPS
- from threading import Timer
- from get_data import get_data_from_odps
- from db_helper import RedisHelper, MysqlHelper
- from my_config import set_config
- from log import Log
- from my_utils import filter_video_status
- config_, env = set_config()
- log_ = Log()
- features = [
- 'videoid',
- 'lastonehour_view', # 过去1小时曝光
- 'lastonehour_play', # 过去1小时播放
- 'lastonehour_share', # 过去1小时分享
- 'lastonehour_return', # 过去1小时分享,过去1小时回流
- ]
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- except Exception as e:
- data_count = 0
- return data_count
- def get_feature_data(now_date, project, table):
- """获取特征数据"""
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- # dt = '2022041310'
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def cal_score(df):
- """
- 计算score
- :param df: 特征数据
- :return:
- """
- # score计算公式: sharerate*backrate*logback*ctr
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
- # 视频状态过滤
- log_.info(f'initial_df count = {len(df)}')
- video_ids = [int(video_id) for video_id in df['videoid']]
- filtered_result = filter_video_status(video_ids=video_ids)
- filter_result = set(video_ids) - set(filtered_result)
- df['videoid'] = df['videoid'].astype(int)
- filter_df = df[df['videoid'].isin(filter_result)]
- df = df.append(filter_df)
- df = df.drop_duplicates(['videoid'], keep=False)
- log_.info(f'filtered_df count = {len(df)}')
- # 计算score
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def video_rank(app_type, df, now_date, now_h, return_count):
- """
- 根据回流数量,对视频进行二次排序
- :param app_type:
- :param df:
- :param now_date:
- :param now_h:
- :param return_count: 小时级数据回流限制数
- :return:
- """
- log_.info(f'df length = {len(df)}')
- # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
- h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= 0.005)]
- h_recall_videos = h_recall_df['videoid'].to_list()
- log_.info(f'h_recall videos count = {len(h_recall_videos)}')
- # 不符合进入召回源条件的视频
- df = df.append(h_recall_df)
- h_else_df = df.drop_duplicates(['videoid'], keep=False)
- h_else_df = h_else_df.sort_values(by=['score'], ascending=False)
- h_else_videos = h_else_df['videoid'].to_list()
- # 合并,给定分数
- final_videos = h_recall_videos + h_else_videos
- final_result = {}
- step = round(100/len(final_videos), 3)
- for i, video_id in enumerate(final_videos):
- score = 100 - i * step
- final_result[int(video_id)] = score
- # 写入对应的redis
- key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(final_result) > 0:
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=final_result, expire_time=23 * 3600)
- def rank_by_h(app_type, now_date, now_h, return_count_list, project, table):
- # 获取特征数据
- feature_df = get_feature_data(now_date=now_date, project=project, table=table)
- # 计算score
- score_df = cal_score(df=feature_df)
- # rank
- for cnt in return_count_list:
- log_.info(f"return_count = {cnt}")
- video_rank(app_type=app_type, df=score_df, now_date=now_date, now_h=now_h, return_count=cnt)
- # to-csv
- score_filename = f"score_{app_type}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- score_df.to_csv(f'./data/{score_filename}')
- def h_rank_bottom(app_type, now_date, now_h):
- """未按时更新数据,用上一小时结果作为当前小时的数据"""
- log_.info(f"app_type = {app_type}")
- # 获取rov模型结果
- redis_helper = RedisHelper()
- if now_h == 0:
- redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- redis_h = 23
- else:
- redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- redis_h = now_h - 1
- key_name = f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{redis_dt}.{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- final_data = dict()
- for video_id, score in initial_data:
- final_data[video_id] = score
- # 存入对应的redis
- final_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
- def h_timer_check(app_type):
- log_.info(f"app_type = {app_type}")
- return_count_list = [20]
- now_date = datetime.datetime.today()
- log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
- now_h = datetime.datetime.now().hour
- now_min = datetime.datetime.now().minute
- if now_h == 0:
- h_rank_bottom(app_type=app_type, now_date=now_date, now_h=now_h)
- return
- # 查看当前小时更新的数据是否已准备好
- project = config_.PREDICT_PROJECT_18_19[str(app_type)]
- table = config_.PREDICT_TABLE_18_19[str(app_type)]
- h_data_count = h_data_check(project=project, table=table, now_date=now_date)
- if h_data_count > 0:
- log_.info(f'h_data_count = {h_data_count}')
- # 数据准备好,进行更新
- rank_by_h(app_type=app_type, now_date=now_date, now_h=now_h,
- return_count_list=return_count_list, project=project, table=table)
- elif now_min > 50:
- log_.info('h_recall data is None, use bottom data!')
- h_rank_bottom(app_type=app_type, now_date=now_date, now_h=now_h)
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, h_timer_check, args=[app_type]).start()
- def predict(app_type_list):
- for app_type in app_type_list:
- h_timer_check(app_type=app_type)
- def predict_test(app_type_list, count):
- now_date = datetime.datetime.today()
- now_h = datetime.datetime.now().hour
- log_.info(f"now_date = {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, now_h = {now_h}")
- # 获取测试环境中最近发布的40000条视频
- sql = "SELECT id FROM wx_video ORDER BY id DESC LIMIT 40000;"
- mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
- data = mysql_helper.get_data(sql=sql)
- video_ids = [int(video[0]) for video in data]
- # 视频状态过滤
- filtered_videos = filter_video_status(video_ids)
- log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
- for app_type in app_type_list:
- log_.info(f"app_type = {app_type}")
- videos_temp = random.sample(filtered_videos, count)
- redis_data_temp = {}
- csv_data_temp = []
- for video_id in videos_temp:
- score = random.uniform(0, 100)
- redis_data_temp[video_id] = score
- csv_data_temp.append({'video_id': video_id, 'rov_score': score})
- # 打包预测结果存入csv
- score_df = pd.DataFrame(data=csv_data_temp, columns=['video_id', 'rov_score'])
- score_df = score_df.sort_values(by=['rov_score'], ascending=False)
- score_filename = f"score_{app_type}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- score_df.to_csv(f'./data/{score_filename}', index=False)
- # 存入对应的redis
- key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data_temp)
- log_.info('data to redis finished!')
- if __name__ == '__main__':
- app_type_list = [config_.APP_TYPE['LAO_HAO_KAN_VIDEO'], config_.APP_TYPE['ZUI_JING_QI']]
- log_.info(f'appType: {app_type_list} predict start...')
- predict_start = time.time()
- if env in ['dev', 'test']:
- predict_test(app_type_list=app_type_list, count=300)
- elif env in ['pre', 'pro']:
- predict(app_type_list=app_type_list)
- else:
- log_.error('env error')
- predict_end = time.time()
- log_.info(f'appType: {app_type_list} predict end, execute time = {(predict_end - predict_start) * 1000}ms')
|