region_rule_rank_day.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from my_utils import RedisHelper, get_data_from_odps, filter_video_status
  12. from my_config import set_config
  13. from log import Log
  14. config_, _ = set_config()
  15. log_ = Log()
  16. region_code = {
  17. '河北省': '130000',
  18. '山西省': '140000',
  19. '辽宁省': '210000',
  20. '吉林省': '220000',
  21. '黑龙江省': '230000',
  22. '江苏省': '320000',
  23. '浙江省': '330000',
  24. '安徽省': '340000',
  25. '福建省': '350000',
  26. '江西省': '360000',
  27. '山东省': '370000',
  28. '河南省': '410000',
  29. '湖北省': '420000',
  30. '湖南省': '430000',
  31. '广东省': '440000',
  32. '海南省': '460000',
  33. '四川省': '510000',
  34. '贵州省': '520000',
  35. '云南省': '530000',
  36. '陕西省': '610000',
  37. '甘肃省': '620000',
  38. '青海省': '630000',
  39. '台湾省': '710000',
  40. '北京': '110000',
  41. '天津': '120000',
  42. '内蒙古': '150000',
  43. '上海': '310000',
  44. '广西': '450000',
  45. '重庆': '500000',
  46. '西藏': '540000',
  47. '宁夏': '640000',
  48. '新疆': '650000',
  49. '香港': '810000',
  50. '澳门': '820000',
  51. }
  52. features = [
  53. 'code', # 省份编码
  54. 'videoid',
  55. 'lastday_preview', # 昨日预曝光人数
  56. 'lastday_view', # 昨日曝光人数
  57. 'lastday_play', # 昨日播放人数
  58. 'lastday_share', # 昨日分享人数
  59. 'lastday_return', # 昨日回流人数
  60. 'lastday_preview_total', # 昨日预曝光次数
  61. 'lastday_view_total', # 昨日曝光次数
  62. 'lastday_play_total', # 昨日播放次数
  63. 'lastday_share_total', # 昨日分享次数
  64. ]
  65. def data_check(project, table, now_date):
  66. """检查数据是否准备好"""
  67. odps = ODPS(
  68. access_id=config_.ODPS_CONFIG['ACCESSID'],
  69. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  70. project=project,
  71. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  72. connect_timeout=3000,
  73. read_timeout=500000,
  74. pool_maxsize=1000,
  75. pool_connections=1000
  76. )
  77. try:
  78. dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  79. sql = f'select * from {project}.{table} where dt = {dt}'
  80. with odps.execute_sql(sql=sql).open_reader() as reader:
  81. data_count = reader.count
  82. except Exception as e:
  83. data_count = 0
  84. return data_count
  85. def get_feature_data(project, table, now_date):
  86. """获取特征数据"""
  87. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  88. # dt = '2022041310'
  89. records = get_data_from_odps(date=dt, project=project, table=table)
  90. feature_data = []
  91. for record in records:
  92. item = {}
  93. for feature_name in features:
  94. item[feature_name] = record[feature_name]
  95. feature_data.append(item)
  96. feature_df = pd.DataFrame(feature_data)
  97. return feature_df
  98. def cal_score(df):
  99. """
  100. 计算score
  101. :param df: 特征数据
  102. :return:
  103. """
  104. # score计算公式: sharerate*backrate*logback*ctr
  105. # sharerate = lastday_share/(lastday_play+1000)
  106. # backrate = lastday_return/(lastday_share+10)
  107. # ctr = lastday_play/(lastday_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  108. # score = sharerate * backrate * LOG(lastday_return+1) * K2
  109. df = df.fillna(0)
  110. df['share_rate'] = df['lastday_share'] / (df['lastday_play'] + 1000)
  111. df['back_rate'] = df['lastday_return'] / (df['lastday_share'] + 10)
  112. df['log_back'] = (df['lastday_return'] + 1).apply(math.log)
  113. df['ctr'] = df['lastday_play'] / (df['lastday_preview'] + 1000)
  114. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  115. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  116. df = df.sort_values(by=['score'], ascending=False)
  117. return df
  118. def video_rank(df, now_date, rule_key, param, region):
  119. """
  120. 获取符合进入召回源条件的视频
  121. :param df:
  122. :param now_date:
  123. :param rule_key: 小时级数据进入条件
  124. :param param: 小时级数据进入条件参数
  125. :param region: 所属地域
  126. :return:
  127. """
  128. redis_helper = RedisHelper()
  129. # 获取符合进入召回源条件的视频
  130. return_count = param.get('return_count', 1)
  131. score_value = param.get('score_rule', 0)
  132. h_recall_df = df[(df['lastday_return'] >= return_count) & (df['score'] >= score_value)]
  133. # videoid重复时,保留分值高
  134. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  135. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  136. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  137. h_recall_videos = h_recall_df['videoid'].to_list()
  138. log_.info(f'day_recall videos count = {len(h_recall_videos)}')
  139. # 视频状态过滤
  140. filtered_videos = filter_video_status(h_recall_videos)
  141. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  142. # 写入对应的redis
  143. day_recall_result = {}
  144. for video_id in filtered_videos:
  145. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  146. # print(score)
  147. day_recall_result[int(video_id)] = float(score)
  148. day_recall_key_name = \
  149. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_DAY}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  150. if len(day_recall_result) > 0:
  151. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=7 * 24 * 3600)
  152. def rank_by_day(project, table, now_date, rule_params, region_code_list):
  153. # 获取特征数据
  154. feature_df = get_feature_data(project=project, table=table, now_date=now_date - datetime.timedelta(days=1))
  155. # rank
  156. for key, value in rule_params.items():
  157. log_.info(f"rule = {key}, param = {value}")
  158. for region in region_code_list:
  159. log_.info(f"region = {region}")
  160. # 计算score
  161. region_df = feature_df[feature_df['code'] == region]
  162. log_.info(f'region_df count = {len(region_df)}')
  163. score_df = cal_score(df=region_df)
  164. video_rank(df=score_df, now_date=now_date, rule_key=key, param=value, region=region)
  165. # to-csv
  166. score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d')}.csv"
  167. score_df.to_csv(f'./data/{score_filename}')
  168. # to-logs
  169. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d'),
  170. "region_code": region,
  171. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_DAY,
  172. "rule_key": key,
  173. "score_df": score_df[['videoid', 'score']]})
  174. def h_timer_check():
  175. rule_params = config_.RULE_PARAMS_REGION_DAY
  176. project = config_.PROJECT_REGION_DAY
  177. table = config_.TABLE_REGION_DAY
  178. region_code_list = [code for region, code in region_code.items()]
  179. now_date = datetime.datetime.today()
  180. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d')}")
  181. # 查看当天更新的数据是否已准备好
  182. h_data_count = data_check(project=project, table=table, now_date=now_date)
  183. if h_data_count > 0:
  184. log_.info(f'day_data_count = {h_data_count}')
  185. # 数据准备好,进行更新
  186. rank_by_day(now_date=now_date, rule_params=rule_params,
  187. project=project, table=table, region_code_list=region_code_list)
  188. else:
  189. # 数据没准备好,1分钟后重新检查
  190. Timer(60, h_timer_check).start()
  191. if __name__ == '__main__':
  192. h_timer_check()