alg_recsys_recall_24h_region.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. # -*- coding: utf-8 -*-
  2. import multiprocessing
  3. import traceback
  4. import gevent
  5. import datetime
  6. import pandas as pd
  7. import math
  8. from functools import reduce
  9. from odps import ODPS
  10. from threading import Timer, Thread
  11. from my_utils import RedisHelper, get_data_from_odps, filter_video_status, check_table_partition_exits, \
  12. filter_video_status_app, send_msg_to_feishu
  13. from my_config import set_config
  14. from log import Log
  15. # os.environ['NUMEXPR_MAX_THREADS'] = '16'
  16. config_, _ = set_config()
  17. log_ = Log()
  18. region_code = config_.REGION_CODE
  19. RULE_PARAMS = {
  20. 'rule_params': {
  21. 'rule66': {'view_type': 'video-show', 'return_count': 21, 'score_rule': 0, 'platform_return_rate': 0.001},
  22. },
  23. 'data_params': config_.DATA_PARAMS,
  24. 'params_list': [
  25. {'data': 'data66', 'rule': 'rule66'},
  26. ]
  27. }
  28. features = [
  29. 'apptype',
  30. 'code', # 省份编码
  31. 'videoid',
  32. 'lastday_preview', # 昨日预曝光人数
  33. 'lastday_view', # 昨日曝光人数
  34. 'lastday_play', # 昨日播放人数
  35. 'lastday_share', # 昨日分享人数
  36. 'lastday_return', # 昨日回流人数
  37. 'lastday_preview_total', # 昨日预曝光次数
  38. 'lastday_view_total', # 昨日曝光次数
  39. 'lastday_play_total', # 昨日播放次数
  40. 'lastday_share_total', # 昨日分享次数
  41. 'platform_return',
  42. 'platform_preview',
  43. 'platform_preview_total',
  44. 'platform_show',
  45. 'platform_show_total',
  46. 'platform_view',
  47. 'platform_view_total',
  48. ]
  49. def get_rov_redis_key(now_date):
  50. """获取rov模型结果存放key"""
  51. redis_helper = RedisHelper()
  52. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  53. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  54. if not redis_helper.key_exists(key_name=key_name):
  55. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  56. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  57. return key_name
  58. def data_check(project, table, now_date):
  59. """检查数据是否准备好"""
  60. odps = ODPS(
  61. access_id=config_.ODPS_CONFIG['ACCESSID'],
  62. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  63. project=project,
  64. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  65. connect_timeout=3000,
  66. read_timeout=500000,
  67. pool_maxsize=1000,
  68. pool_connections=1000
  69. )
  70. try:
  71. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  72. check_res = check_table_partition_exits(date=dt, project=project, table=table)
  73. if check_res:
  74. sql = f'select * from {project}.{table} where dt = {dt}'
  75. with odps.execute_sql(sql=sql).open_reader() as reader:
  76. data_count = reader.count
  77. else:
  78. data_count = 0
  79. except Exception as e:
  80. data_count = 0
  81. return data_count
  82. def get_feature_data(project, table, now_date):
  83. """获取特征数据"""
  84. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  85. # dt = '2022041310'
  86. records = get_data_from_odps(date=dt, project=project, table=table)
  87. feature_data = []
  88. for record in records:
  89. item = {}
  90. for feature_name in features:
  91. item[feature_name] = record[feature_name]
  92. feature_data.append(item)
  93. feature_df = pd.DataFrame(feature_data)
  94. return feature_df
  95. def cal_score(df, param):
  96. """
  97. 计算score
  98. :param df: 特征数据
  99. :param param:
  100. :return:
  101. """
  102. # score计算公式: sharerate*backrate*logback*ctr
  103. # sharerate = lastday_share/(lastday_play+1000)
  104. # backrate = lastday_return/(lastday_share+10)
  105. # ctr = lastday_play/(lastday_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  106. # score = sharerate * backrate * LOG(lastday_return+1) * K2
  107. df = df.fillna(0)
  108. df['share_rate'] = df['lastday_share'] / (df['lastday_play'] + 1000)
  109. df['back_rate'] = df['lastday_return'] / (df['lastday_share'] + 10)
  110. df['log_back'] = (df['lastday_return'] + 1).apply(math.log)
  111. if param.get('view_type', None) == 'video-show':
  112. df['ctr'] = df['lastday_play'] / (df['platform_show'] + 1000)
  113. else:
  114. df['ctr'] = df['lastday_play'] / (df['lastday_preview'] + 1000)
  115. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  116. df['platform_return_rate'] = df['platform_return'] / df['lastday_return']
  117. df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  118. click_score_rate = param.get('click_score_rate', None)
  119. back_score_rate = param.get('click_score_rate', None)
  120. if click_score_rate is not None:
  121. df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
  122. elif back_score_rate is not None:
  123. df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
  124. else:
  125. df['score'] = df['score1']
  126. df = df.sort_values(by=['score'], ascending=False)
  127. return df
  128. def video_rank(df, now_date, now_h, rule_key, param, region, data_key):
  129. """
  130. 获取符合进入召回源条件的视频
  131. :param df:
  132. :param now_date:
  133. :param now_h:
  134. :param rule_key: 小时级数据进入条件
  135. :param param: 小时级数据进入条件参数
  136. :param region: 所属地域
  137. :return:
  138. """
  139. redis_helper = RedisHelper()
  140. # 获取符合进入召回源条件的视频
  141. return_count = param.get('return_count', 1)
  142. score_value = param.get('score_rule', 0)
  143. platform_return_rate = param.get('platform_return_rate', 0)
  144. h_recall_df = df[(df['lastday_return'] >= return_count) & (df['score'] >= score_value)
  145. & (df['platform_return_rate'] >= platform_return_rate)]
  146. # videoid重复时,保留分值高
  147. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  148. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  149. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  150. h_recall_videos = h_recall_df['videoid'].to_list()
  151. log_.info(f"各种规则过滤后,一共有多少个视频 = {len(h_recall_videos)}")
  152. # 视频状态过滤
  153. if data_key in ['data7', ]:
  154. filtered_videos = filter_video_status_app(h_recall_videos)
  155. else:
  156. filtered_videos = filter_video_status(h_recall_videos)
  157. log_.info(f"视频状态-过滤后,一共有多少个视频 = {len(filtered_videos)}")
  158. # 写入对应的redis
  159. h_video_ids = []
  160. day_recall_result = {}
  161. for video_id in filtered_videos:
  162. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  163. day_recall_result[int(video_id)] = float(score)
  164. h_video_ids.append(int(video_id))
  165. day_recall_key_name = \
  166. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{rule_key}:" \
  167. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  168. log_.info("打印地域24小时的某个地域{},redis key:{}".format(region, day_recall_key_name))
  169. if len(day_recall_result) > 0:
  170. log_.info(f"开始写入头部数据:count = {len(day_recall_result)}, key = {day_recall_key_name}")
  171. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=2 * 3600)
  172. else:
  173. log_.info(f"无数据,不写入。")
  174. # 清空线上过滤应用列表
  175. # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{app_type}.{data_key}.{rule_key}")
  176. # 与其他召回视频池去重,存入对应的redis
  177. # dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  178. def merge_df(df_left, df_right):
  179. """
  180. df按照videoid, code 合并,对应特征求和
  181. :param df_left:
  182. :param df_right:
  183. :return:
  184. """
  185. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  186. df_merged.fillna(0, inplace=True)
  187. feature_list = ['videoid', 'code']
  188. for feature in features:
  189. if feature in ['apptype', 'videoid', 'code']:
  190. continue
  191. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  192. feature_list.append(feature)
  193. return df_merged[feature_list]
  194. def merge_df_with_score(df_left, df_right):
  195. """
  196. df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
  197. :param df_left:
  198. :param df_right:
  199. :return:
  200. """
  201. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  202. df_merged.fillna(0, inplace=True)
  203. feature_list = ['videoid', 'code', 'lastday_return', 'platform_return', 'score']
  204. for feature in feature_list[2:]:
  205. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  206. return df_merged[feature_list]
  207. def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h):
  208. log_.info(f"多协程的region = {region} 开始执行")
  209. region_df = df_merged[df_merged['code'] == region]
  210. log_.info(f'该区域region = {region}, 下有多少数据量 = {len(region_df)}')
  211. score_df = cal_score(df=region_df, param=rule_param)
  212. video_rank(df=score_df, now_date=now_date, now_h=now_h, region=region,
  213. rule_key=rule_key, param=rule_param, data_key=data_key)
  214. log_.info(f"多协程的region = {region} 完成执行")
  215. def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h):
  216. log_.info(f"region = {region} start...")
  217. region_score_df = df_merged[df_merged['code'] == region]
  218. log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
  219. video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
  220. rule_key=rule_key, param=rule_param, data_key=data_key)
  221. log_.info(f"region = {region} end!")
  222. def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h):
  223. log_.info(f"app_type = {app_type} start...")
  224. data_params_item = params.get('data_params')
  225. rule_params_item = params.get('rule_params')
  226. for param in params.get('params_list'):
  227. data_key = param.get('data')
  228. data_param = data_params_item.get(data_key)
  229. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  230. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  231. df_merged = reduce(merge_df, df_list)
  232. rule_key = param.get('rule')
  233. rule_param = rule_params_item.get(rule_key)
  234. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  235. task_list = [
  236. gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
  237. now_date, now_h)
  238. for region in region_code_list
  239. ]
  240. gevent.joinall(task_list)
  241. log_.info(f"app_type = {app_type} end!")
  242. def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h):
  243. data_key = param.get('data')
  244. data_param = data_params_item.get(data_key)
  245. rule_key = param.get('rule')
  246. rule_param = rule_params_item.get(rule_key)
  247. merge_func = rule_param.get('merge_func', None)
  248. log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
  249. log_.info("具体的规则是:{}.".format(rule_param))
  250. if merge_func == 2:
  251. score_df_list = []
  252. for apptype, weight in data_param.items():
  253. df = feature_df[feature_df['apptype'] == apptype]
  254. # 计算score
  255. score_df = cal_score(df=df, param=rule_param)
  256. score_df['score'] = score_df['score'] * weight
  257. score_df_list.append(score_df)
  258. # 分数合并
  259. df_merged = reduce(merge_df_with_score, score_df_list)
  260. # 更新平台回流比
  261. df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastday_return']
  262. task_list = [
  263. gevent.spawn(process_with_region2, region, df_merged, data_key, rule_key, rule_param, now_date, now_h)
  264. for region in region_code_list
  265. ]
  266. else:
  267. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
  268. df_merged = reduce(merge_df, df_list)
  269. task_list = [
  270. gevent.spawn(process_with_region, region, df_merged, data_key, rule_key, rule_param, now_date, now_h)
  271. for region in region_code_list
  272. ]
  273. gevent.joinall(task_list)
  274. log_.info(f"多进程的 param = {param} 完成执行!")
  275. def rank_by_24h(project, table, now_date, now_h, rule_params, region_code_list):
  276. # 获取特征数据
  277. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  278. feature_df['apptype'] = feature_df['apptype'].astype(int)
  279. # rank
  280. data_params_item = rule_params.get('data_params')
  281. rule_params_item = rule_params.get('rule_params')
  282. params_list = rule_params.get('params_list')
  283. pool = multiprocessing.Pool(processes=len(params_list))
  284. for param in params_list:
  285. pool.apply_async(
  286. func=process_with_param,
  287. args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h)
  288. )
  289. pool.close()
  290. pool.join()
  291. """
  292. pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
  293. for app_type, params in rule_params.items():
  294. pool.apply_async(func=process_with_app_type,
  295. args=(app_type, params, region_code_list, feature_df, now_date, now_h))
  296. pool.close()
  297. pool.join()
  298. """
  299. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
  300. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  301. redis_helper = RedisHelper()
  302. # ##### 去重小程序天级更新结果,并另存为redis中
  303. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  304. if redis_helper.key_exists(key_name=day_key_name):
  305. day_data = redis_helper.get_all_data_from_zset(key_name=day_key_name, with_scores=True)
  306. log_.info(f'day data count = {len(day_data)}')
  307. day_dup = {}
  308. for video_id, score in day_data:
  309. if int(video_id) not in h_video_ids:
  310. day_dup[int(video_id)] = score
  311. h_video_ids.append(int(video_id))
  312. log_.info(f"day data dup count = {len(day_dup)}")
  313. day_dup_key_name = \
  314. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_DAY_24H}{region}.{rule_key}." \
  315. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  316. if len(day_dup) > 0:
  317. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  318. # ##### 去重小程序模型更新结果,并另存为redis中
  319. model_key_name = get_rov_redis_key(now_date=now_date)
  320. model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
  321. log_.info(f'model data count = {len(model_data)}')
  322. model_data_dup = {}
  323. for video_id, score in model_data:
  324. if int(video_id) not in h_video_ids:
  325. model_data_dup[int(video_id)] = score
  326. h_video_ids.append(int(video_id))
  327. log_.info(f"model data dup count = {len(model_data_dup)}")
  328. model_data_dup_key_name = \
  329. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_24H}{region}.{rule_key}." \
  330. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  331. if len(model_data_dup) > 0:
  332. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  333. def h_rank_bottom(now_date, now_h, rule_params, region_code_list):
  334. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  335. redis_helper = RedisHelper()
  336. if now_h == 0:
  337. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  338. redis_h = 23
  339. else:
  340. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  341. redis_h = now_h - 1
  342. # 以上一小时的地域分组数据作为当前小时的数据
  343. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H
  344. for param in rule_params.get('params_list'):
  345. data_key = param.get('data')
  346. rule_key = param.get('rule')
  347. log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
  348. for region in region_code_list:
  349. log_.info(f"region = {region}")
  350. key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
  351. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  352. if initial_data is None:
  353. initial_data = []
  354. final_data = dict()
  355. h_video_ids = []
  356. for video_id, score in initial_data:
  357. final_data[video_id] = score
  358. h_video_ids.append(int(video_id))
  359. # 存入对应的redis
  360. final_key_name = \
  361. f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  362. if len(final_data) > 0:
  363. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
  364. def h_timer_check():
  365. try:
  366. rule_params = RULE_PARAMS
  367. project = config_.PROJECT_REGION_24H_APP_TYPE
  368. table = config_.TABLE_REGION_24H_APP_TYPE
  369. region_code_list = [code for region, code in region_code.items() if code != '-1']
  370. now_date = datetime.datetime.today()
  371. now_h = datetime.datetime.now().hour
  372. now_min = datetime.datetime.now().minute
  373. log_.info(f"开始执行: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  374. # 查看当天更新的数据是否已准备好
  375. h_data_count = data_check(project=project, table=table, now_date=now_date)
  376. if h_data_count > 0:
  377. log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
  378. rank_by_24h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  379. project=project, table=table, region_code_list=region_code_list)
  380. log_.info("数据3----------正常完成----------")
  381. elif now_min > 40:
  382. log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
  383. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list)
  384. log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
  385. else:
  386. # 数据没准备好,1分钟后重新检查
  387. log_.info("上游数据未就绪,等待...")
  388. Timer(60, h_timer_check).start()
  389. except Exception as e:
  390. log_.error(f"地域分组24h数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  391. send_msg_to_feishu(
  392. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  393. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  394. msg_text=f"rov-offline{config_.ENV_TEXT} - 地域分组24h数据更新失败\n"
  395. f"exception: {e}\n"
  396. f"traceback: {traceback.format_exc()}"
  397. )
  398. if __name__ == '__main__':
  399. log_.info("文件alg_recsys_recall_24h_region.py:「24小时地域」 开始执行")
  400. h_timer_check()