123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- # -*- coding: utf-8 -*-
- import pandas as pd
- import traceback
- import odps
- from odps import ODPS
- from threading import Timer
- from datetime import datetime, timedelta
- from db_helper import MysqlHelper
- from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
- get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
- from my_utils import request_post, send_msg_to_feishu
- from my_config import set_config
- import numpy as np
- from log import Log
- import os
- from argparse import ArgumentParser
- from constants import AutoReplyAccountType
- from alg_growth_common import check_unsafe_video, filter_unsafe_video, filter_audit_failed_video
- CONFIG, _ = set_config()
- LOGGER = Log()
- BASE_GROUP_NAME = 'stg0909-base'
- EXPLORE1_GROUP_NAME = 'stg0909-explore1'
- EXPLORE2_GROUP_NAME = 'stg0909-explore2'
- GH_IDS = ('gh_ac43e43b253b', 'gh_93e00e187787', 'gh_77f36c109fb1',
- 'gh_68e7fdc09fe4', 'gh_b181786a6c8c')
- CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
- ODS_PROJECT = "loghubods"
- EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
- GH_REPLY_STATS_TABLE = 'alg_growth_gh_reply_video_stats'
- GH_REPLY_STATS_HOUR_TABLE = 'alg_growth_gh_reply_video_stats_hour'
- ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
- RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
- GH_DETAIL = 'gh_detail'
- STATS_PERIOD_DAYS = 5
- STATS_PERIOD_DAYS_FOR_QUIT = 30
- SEND_N = 2
- pd.set_option('display.max_rows', None)
- def get_and_update_gh_ids(run_dt):
- gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
- gh = gh.to_pandas()
- gh_type = AutoReplyAccountType.SELF_OWNED_GZH.value
- gh = gh.query(f'type == {gh_type} and is_delete == 0')
- # default单独处理
- if 'default' not in gh['gh_id'].values:
- new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
- index=[0])
- gh = pd.concat([gh, new_row], ignore_index=True)
- gh = gh.drop_duplicates(subset=['gh_id'])
- global GH_IDS
- GH_IDS = tuple(gh['gh_id'])
- return gh
- def check_data_partition(project, table, data_dt, data_hr=None):
- """检查数据是否准备好"""
- try:
- partition_spec = {'dt': data_dt}
- if data_hr:
- partition_spec['hour'] = data_hr
- part_exist, data_count = check_table_partition_exits_v2(
- project, table, partition_spec)
- except Exception as e:
- data_count = 0
- return data_count
- def get_last_strategy_result(project, rank_table, dt_version, key):
- strategy_df = get_odps_df_of_max_partition(
- project, rank_table, {'ctime': dt_version}
- ).to_pandas()
- sub_df = strategy_df.query(f'strategy_key == "{key}"')
- sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
- return sub_df
- def process_reply_stats(project, daily_table, hourly_table, period, run_dt, run_hour):
- # 获取多天+当天即转统计数据用于聚合
- df = get_odps_df_of_recent_partitions(
- project, daily_table, period, {'dt': run_dt}).to_pandas()
- hour_data_version = f'{run_dt}{run_hour}'
- hourly_df = get_odps_df_of_recent_partitions(
- project, hourly_table, 1, {'dt': hour_data_version}).to_pandas()
- df = pd.concat([df, hourly_df]).reset_index(drop=True)
- df['video_id'] = df['video_id'].astype('int64')
- df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
- # 获取统计数据时统一去除不安全视频
- df = filter_unsafe_video(df)
- # 账号内聚合
- df = df.groupby(['video_id', 'gh_id']).agg({
- 'send_count': 'sum',
- 'first_visit_uv': 'sum',
- 'day0_return': 'sum'
- }).reset_index()
- # 聚合所有数据作为default
- default_stats_df = df.groupby('video_id').agg({
- 'send_count': 'sum',
- 'first_visit_uv': 'sum',
- 'day0_return': 'sum'
- }).reset_index()
- default_stats_df['gh_id'] = 'default'
- merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
- merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
- return merged_df
- def rank_for_layer1(run_dt, run_hour, project, table, gh_df):
- # TODO: 加审核
- df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
- df = df.to_pandas()
- # use statistic data to quit some low-efficiency video
- stats_df = get_odps_df_of_recent_partitions(
- ODS_PROJECT, GH_REPLY_STATS_TABLE, 30, {'dt': run_dt}).to_pandas()
- stats_df['video_id'] = stats_df['video_id'].astype('int64')
- stats_df = stats_df[['video_id', 'send_count', 'first_visit_uv', 'day0_return']]
- stats_df = stats_df.groupby(['video_id']).agg({
- 'send_count': 'sum',
- 'first_visit_uv': 'sum',
- 'day0_return': 'sum'
- })
- # do not add to denominator
- stats_df['return_by_send'] = stats_df['day0_return'] / (stats_df['send_count'])
- stats_df['open_rate'] = stats_df['first_visit_uv'] / (stats_df['send_count'])
- # do not filter video that does not have enough data
- stats_df = stats_df.query('send_count > 1000')
- df = df.merge(stats_df, on='video_id', how='left')
- open_rate_threshold = df.open_rate.quantile(q=0.2)
- return_by_send_threshold = df.return_by_send.quantile(q=0.2)
- filter_condition = 'open_rate < {} and return_by_send < {}' \
- .format(open_rate_threshold, return_by_send_threshold)
- filter_rows = df.query(filter_condition)
- df = df.drop(filter_rows.index)
- print("low-efficient video to quit:")
- print(filter_rows[['video_id', 'title', 'send_count', 'open_rate', 'return_by_send']])
- df = filter_unsafe_video(df)
- # 确保重跑时可获得一致结果
- dt_version = f'{run_dt}{run_hour}'
- np.random.seed(int(dt_version) + 1)
- # TODO: 修改权重计算策略
- df['score'] = 1.0
- # 按照 category1 分类后进行加权随机抽样
- sampled_df = df.groupby('category1').apply(
- lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
- sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
- sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
- sampled_df['dt_version'] = dt_version
- extend_df = sampled_df.merge(gh_df, on='category1')
- result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
- return result_df
- def rank_for_layer2(run_dt, run_hour, rank_table):
- stats_df = process_reply_stats(
- ODS_PROJECT, GH_REPLY_STATS_TABLE, GH_REPLY_STATS_HOUR_TABLE,
- STATS_PERIOD_DAYS, run_dt, run_hour)
- # 确保重跑时可获得一致结果
- dt_version = f'{run_dt}{run_hour}'
- np.random.seed(int(dt_version) + 1)
- # TODO: 计算账号间相关性
- ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
- ## 求向量相关系数或cosine相似度
- ## 单个视频的RoVn加权求和
- # 当前实现基础版本:只在账号内求二级探索排序分
- sampled_dfs = []
- # 处理default逻辑(default-explore2)
- default_stats_df = stats_df.query('gh_id == "default"')
- sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
- sampled_df['sort'] = range(1, len(sampled_df) + 1)
- sampled_dfs.append(sampled_df)
- # 基础过滤for账号
- df = stats_df.query('day0_return > 100')
- # 目标账号失效视频过滤
- df = filter_audit_failed_video(df)
- # fallback to base if necessary
- base_strategy_df = get_last_strategy_result(
- ODS_PROJECT, rank_table, dt_version, BASE_GROUP_NAME)
- base_strategy_df = filter_audit_failed_video(base_strategy_df)
- for gh_id in GH_IDS:
- if gh_id == 'default':
- continue
- sub_df = df.query(f'gh_id == "{gh_id}"')
- if len(sub_df) < SEND_N:
- LOGGER.warning(
- "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
- .format(gh_id, len(sub_df)))
- sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
- sub_df['score'] = sub_df['sort']
- sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
- sampled_df['sort'] = range(1, len(sampled_df) + 1)
- sampled_dfs.append(sampled_df)
- extend_df = pd.concat(sampled_dfs)
- extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
- extend_df['dt_version'] = dt_version
- result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
- return result_df
- def rank_for_base(run_dt, run_hour, rank_table):
- stats_df = process_reply_stats(
- ODS_PROJECT, GH_REPLY_STATS_TABLE, GH_REPLY_STATS_HOUR_TABLE,
- STATS_PERIOD_DAYS, run_dt, run_hour)
- # TODO: support to set base manually
- dt_version = f'{run_dt}{run_hour}'
- # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
- base_strategy_df = get_last_strategy_result(
- ODS_PROJECT, rank_table, dt_version, BASE_GROUP_NAME)
- default_stats_df = stats_df.query('gh_id == "default"')
- # 在账号内排序,决定该账号(包括default)的base利用内容
- # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
- non_default_ids = list(filter(lambda x: x != 'default', GH_IDS))
- gh_ids_str = ','.join(f'"{x}"' for x in non_default_ids)
- stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
- stats_with_strategy_df = stats_df \
- .merge(
- base_strategy_df,
- on=['gh_id', 'video_id'],
- how='outer') \
- .query('strategy_key.notna() or score > 0.1')
- # 合并default和分账号数据
- grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
- grouped_stats_df = filter_audit_failed_video(grouped_stats_df)
- def set_top_n(group, n=2):
- group_sorted = group.sort_values(by='score', ascending=False)
- top_n = group_sorted.head(n)
- top_n['sort'] = range(1, n + 1)
- return top_n
- ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
- ranked_df = ranked_df.reset_index(drop=True)
- # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
- ranked_df['strategy_key'] = BASE_GROUP_NAME
- ranked_df['dt_version'] = dt_version
- ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
- return ranked_df
- def check_result_data(df):
- check_unsafe_video(df, False)
- for gh_id in GH_IDS:
- for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
- sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
- if len(sub_df) != SEND_N:
- raise Exception(f"Result not enough for gh_id[{gh_id}] group[{key}]")
- def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
- dt_version = f'{run_dt}{run_hour}'
- dry_run = kwargs.get('dry_run', False)
- next_dt = (datetime.strptime(run_dt, "%Y%m%d") + timedelta(1)).strftime("%Y%m%d")
- gh_df = get_and_update_gh_ids(next_dt)
- layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df)
- layer2_rank = rank_for_layer2(run_dt, run_hour, ODPS_RANK_RESULT_TABLE)
- base_rank = rank_for_base(run_dt, run_hour, ODPS_RANK_RESULT_TABLE)
- final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
- check_result_data(final_rank_df)
- odps_instance = get_odps_instance(project)
- odps_ranked_df = odps.DataFrame(final_rank_df)
- video_df = get_dataframe_from_odps('videoods', 'wx_video')
- video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
- video_df = video_df['id', 'title', 'cover_url']
- final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
- final_df = final_df.to_pandas()
- final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
- # reverse sending order
- final_df['sort'] = SEND_N + 1 - final_df['sort']
- # clean NAN value
- final_df = final_df.fillna({'score': 0.0})
- if dry_run:
- print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]
- .sort_values(by=['strategy_key', 'gh_id', 'sort']))
- return
- # save to ODPS
- t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
- part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
- part_spec =','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
- with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
- writer.write(list(final_df.itertuples(index=False)))
- # sync to MySQL
- data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
- data_columns = list(final_df.columns)
- mysql = MysqlHelper(CONFIG.MYSQL_GROWTH_INFO)
- mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
- def main_loop():
- argparser = ArgumentParser()
- argparser.add_argument('-n', '--dry-run', action='store_true')
- argparser.add_argument('--run-at', help='assume to run at date and hour, yyyyMMddHH')
- args = argparser.parse_args()
- run_date = datetime.today()
- if args.run_at:
- run_date = datetime.strptime(args.run_at, "%Y%m%d%H")
- LOGGER.info(f"Assume to run at {run_date.strftime('%Y-%m-%d %H:00')}")
- try:
- now_date = datetime.today()
- LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
- last_date = run_date - timedelta(1)
- last_dt = last_date.strftime("%Y%m%d")
- # 查看当前天级更新的数据是否已准备好
- # 当前上游统计表为天级更新,但字段设计为兼容小时级
- h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
- if h_data_count > 0:
- LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
- run_dt = run_date.strftime("%Y%m%d")
- run_hour = run_date.strftime("%H")
- LOGGER.info(f'run_dt: {run_dt}, run_hour: {run_hour}')
- build_and_transfer_data(run_dt, run_hour, ODS_PROJECT,
- dry_run=args.dry_run)
- LOGGER.info('数据更新完成')
- else:
- LOGGER.info("上游数据未就绪,等待60s")
- Timer(60, main_loop).start()
- return
- except Exception as e:
- LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- if CONFIG.ENV_TEXT == '开发环境' or args.dry_run:
- return
- send_msg_to_feishu(
- webhook=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('webhook'),
- key_word=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('key_word'),
- msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
- if __name__ == '__main__':
- LOGGER.info("%s 开始执行" % os.path.basename(__file__))
- LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
- main_loop()
|