alg_growth_gh_reply_video_v1.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from db_helper import MysqlHelper
  9. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  10. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  11. from my_utils import request_post, send_msg_to_feishu
  12. from my_config import set_config
  13. import numpy as np
  14. from log import Log
  15. import os
  16. from argparse import ArgumentParser
  17. from constants import AutoReplyAccountType
  18. from alg_growth_common import check_unsafe_video, filter_unsafe_video, filter_audit_failed_video
  19. CONFIG, _ = set_config()
  20. LOGGER = Log()
  21. BASE_GROUP_NAME = 'stg0909-base'
  22. EXPLORE1_GROUP_NAME = 'stg0909-explore1'
  23. EXPLORE2_GROUP_NAME = 'stg0909-explore2'
  24. GH_IDS = ('gh_ac43e43b253b', 'gh_93e00e187787', 'gh_77f36c109fb1',
  25. 'gh_68e7fdc09fe4', 'gh_b181786a6c8c')
  26. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  27. ODS_PROJECT = "loghubods"
  28. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  29. GH_REPLY_STATS_TABLE = 'alg_growth_gh_reply_video_stats'
  30. GH_REPLY_STATS_HOUR_TABLE = 'alg_growth_gh_reply_video_stats_hour'
  31. ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  32. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  33. GH_DETAIL = 'gh_detail'
  34. STATS_PERIOD_DAYS = 5
  35. STATS_PERIOD_DAYS_FOR_QUIT = 30
  36. SEND_N = 2
  37. pd.set_option('display.max_rows', None)
  38. def get_and_update_gh_ids(run_dt):
  39. gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
  40. gh = gh.to_pandas()
  41. gh_type = AutoReplyAccountType.SELF_OWNED_GZH.value
  42. gh = gh.query(f'type == {gh_type} and is_delete == 0')
  43. # default单独处理
  44. if 'default' not in gh['gh_id'].values:
  45. new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
  46. index=[0])
  47. gh = pd.concat([gh, new_row], ignore_index=True)
  48. gh = gh.drop_duplicates(subset=['gh_id'])
  49. global GH_IDS
  50. GH_IDS = tuple(gh['gh_id'])
  51. return gh
  52. def check_data_partition(project, table, data_dt, data_hr=None):
  53. """检查数据是否准备好"""
  54. try:
  55. partition_spec = {'dt': data_dt}
  56. if data_hr:
  57. partition_spec['hour'] = data_hr
  58. part_exist, data_count = check_table_partition_exits_v2(
  59. project, table, partition_spec)
  60. except Exception as e:
  61. data_count = 0
  62. return data_count
  63. def get_last_strategy_result(project, rank_table, dt_version, key):
  64. strategy_df = get_odps_df_of_max_partition(
  65. project, rank_table, {'ctime': dt_version}
  66. ).to_pandas()
  67. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  68. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  69. return sub_df
  70. def process_reply_stats(project, daily_table, hourly_table, period, run_dt, run_hour):
  71. # 获取多天+当天即转统计数据用于聚合
  72. df = get_odps_df_of_recent_partitions(
  73. project, daily_table, period, {'dt': run_dt}).to_pandas()
  74. hour_data_version = f'{run_dt}{run_hour}'
  75. hourly_df = get_odps_df_of_recent_partitions(
  76. project, hourly_table, 1, {'dt': hour_data_version}).to_pandas()
  77. df = pd.concat([df, hourly_df]).reset_index(drop=True)
  78. df['video_id'] = df['video_id'].astype('int64')
  79. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  80. # 获取统计数据时统一去除不安全视频
  81. df = filter_unsafe_video(df)
  82. # 账号内聚合
  83. df = df.groupby(['video_id', 'gh_id']).agg({
  84. 'send_count': 'sum',
  85. 'first_visit_uv': 'sum',
  86. 'day0_return': 'sum'
  87. }).reset_index()
  88. # 聚合所有数据作为default
  89. default_stats_df = df.groupby('video_id').agg({
  90. 'send_count': 'sum',
  91. 'first_visit_uv': 'sum',
  92. 'day0_return': 'sum'
  93. }).reset_index()
  94. default_stats_df['gh_id'] = 'default'
  95. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  96. merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
  97. return merged_df
  98. def rank_for_layer1(run_dt, run_hour, project, table, gh_df):
  99. # TODO: 加审核
  100. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  101. df = df.to_pandas()
  102. # use statistic data to quit some low-efficiency video
  103. stats_df = get_odps_df_of_recent_partitions(
  104. ODS_PROJECT, GH_REPLY_STATS_TABLE, 30, {'dt': run_dt}).to_pandas()
  105. stats_df['video_id'] = stats_df['video_id'].astype('int64')
  106. stats_df = stats_df[['video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  107. stats_df = stats_df.groupby(['video_id']).agg({
  108. 'send_count': 'sum',
  109. 'first_visit_uv': 'sum',
  110. 'day0_return': 'sum'
  111. })
  112. # do not add to denominator
  113. stats_df['return_by_send'] = stats_df['day0_return'] / (stats_df['send_count'])
  114. stats_df['open_rate'] = stats_df['first_visit_uv'] / (stats_df['send_count'])
  115. # do not filter video that does not have enough data
  116. stats_df = stats_df.query('send_count > 1000')
  117. df = df.merge(stats_df, on='video_id', how='left')
  118. open_rate_threshold = df.open_rate.quantile(q=0.2)
  119. return_by_send_threshold = df.return_by_send.quantile(q=0.2)
  120. filter_condition = 'open_rate < {} and return_by_send < {}' \
  121. .format(open_rate_threshold, return_by_send_threshold)
  122. filter_rows = df.query(filter_condition)
  123. df = df.drop(filter_rows.index)
  124. print("low-efficient video to quit:")
  125. print(filter_rows[['video_id', 'title', 'send_count', 'open_rate', 'return_by_send']])
  126. df = filter_unsafe_video(df)
  127. # 确保重跑时可获得一致结果
  128. dt_version = f'{run_dt}{run_hour}'
  129. np.random.seed(int(dt_version) + 1)
  130. # TODO: 修改权重计算策略
  131. df['score'] = 1.0
  132. # 按照 category1 分类后进行加权随机抽样
  133. sampled_df = df.groupby('category1').apply(
  134. lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
  135. sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
  136. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  137. sampled_df['dt_version'] = dt_version
  138. extend_df = sampled_df.merge(gh_df, on='category1')
  139. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  140. return result_df
  141. def rank_for_layer2(run_dt, run_hour, rank_table):
  142. stats_df = process_reply_stats(
  143. ODS_PROJECT, GH_REPLY_STATS_TABLE, GH_REPLY_STATS_HOUR_TABLE,
  144. STATS_PERIOD_DAYS, run_dt, run_hour)
  145. # 确保重跑时可获得一致结果
  146. dt_version = f'{run_dt}{run_hour}'
  147. np.random.seed(int(dt_version) + 1)
  148. # TODO: 计算账号间相关性
  149. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  150. ## 求向量相关系数或cosine相似度
  151. ## 单个视频的RoVn加权求和
  152. # 当前实现基础版本:只在账号内求二级探索排序分
  153. sampled_dfs = []
  154. # 处理default逻辑(default-explore2)
  155. default_stats_df = stats_df.query('gh_id == "default"')
  156. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  157. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  158. sampled_dfs.append(sampled_df)
  159. # 基础过滤for账号
  160. df = stats_df.query('day0_return > 100')
  161. # 目标账号失效视频过滤
  162. df = filter_audit_failed_video(df)
  163. # fallback to base if necessary
  164. base_strategy_df = get_last_strategy_result(
  165. ODS_PROJECT, rank_table, dt_version, BASE_GROUP_NAME)
  166. base_strategy_df = filter_audit_failed_video(base_strategy_df)
  167. for gh_id in GH_IDS:
  168. if gh_id == 'default':
  169. continue
  170. sub_df = df.query(f'gh_id == "{gh_id}"')
  171. if len(sub_df) < SEND_N:
  172. LOGGER.warning(
  173. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  174. .format(gh_id, len(sub_df)))
  175. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  176. sub_df['score'] = sub_df['sort']
  177. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  178. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  179. sampled_dfs.append(sampled_df)
  180. extend_df = pd.concat(sampled_dfs)
  181. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  182. extend_df['dt_version'] = dt_version
  183. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  184. return result_df
  185. def rank_for_base(run_dt, run_hour, rank_table):
  186. stats_df = process_reply_stats(
  187. ODS_PROJECT, GH_REPLY_STATS_TABLE, GH_REPLY_STATS_HOUR_TABLE,
  188. STATS_PERIOD_DAYS, run_dt, run_hour)
  189. # TODO: support to set base manually
  190. dt_version = f'{run_dt}{run_hour}'
  191. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  192. base_strategy_df = get_last_strategy_result(
  193. ODS_PROJECT, rank_table, dt_version, BASE_GROUP_NAME)
  194. default_stats_df = stats_df.query('gh_id == "default"')
  195. # 在账号内排序,决定该账号(包括default)的base利用内容
  196. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  197. non_default_ids = list(filter(lambda x: x != 'default', GH_IDS))
  198. gh_ids_str = ','.join(f'"{x}"' for x in non_default_ids)
  199. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  200. stats_with_strategy_df = stats_df \
  201. .merge(
  202. base_strategy_df,
  203. on=['gh_id', 'video_id'],
  204. how='outer') \
  205. .query('strategy_key.notna() or score > 0.1')
  206. # 合并default和分账号数据
  207. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  208. grouped_stats_df = filter_audit_failed_video(grouped_stats_df)
  209. def set_top_n(group, n=2):
  210. group_sorted = group.sort_values(by='score', ascending=False)
  211. top_n = group_sorted.head(n)
  212. top_n['sort'] = range(1, n + 1)
  213. return top_n
  214. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  215. ranked_df = ranked_df.reset_index(drop=True)
  216. # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
  217. ranked_df['strategy_key'] = BASE_GROUP_NAME
  218. ranked_df['dt_version'] = dt_version
  219. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  220. return ranked_df
  221. def check_result_data(df):
  222. check_unsafe_video(df, False)
  223. for gh_id in GH_IDS:
  224. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  225. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  226. if len(sub_df) != SEND_N:
  227. raise Exception(f"Result not enough for gh_id[{gh_id}] group[{key}]")
  228. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  229. dt_version = f'{run_dt}{run_hour}'
  230. dry_run = kwargs.get('dry_run', False)
  231. next_dt = (datetime.strptime(run_dt, "%Y%m%d") + timedelta(1)).strftime("%Y%m%d")
  232. gh_df = get_and_update_gh_ids(next_dt)
  233. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df)
  234. layer2_rank = rank_for_layer2(run_dt, run_hour, ODPS_RANK_RESULT_TABLE)
  235. base_rank = rank_for_base(run_dt, run_hour, ODPS_RANK_RESULT_TABLE)
  236. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  237. check_result_data(final_rank_df)
  238. odps_instance = get_odps_instance(project)
  239. odps_ranked_df = odps.DataFrame(final_rank_df)
  240. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  241. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  242. video_df = video_df['id', 'title', 'cover_url']
  243. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  244. final_df = final_df.to_pandas()
  245. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  246. # reverse sending order
  247. final_df['sort'] = SEND_N + 1 - final_df['sort']
  248. # clean NAN value
  249. final_df = final_df.fillna({'score': 0.0})
  250. if dry_run:
  251. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]
  252. .sort_values(by=['strategy_key', 'gh_id', 'sort']))
  253. return
  254. # save to ODPS
  255. t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
  256. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  257. part_spec =','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  258. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  259. writer.write(list(final_df.itertuples(index=False)))
  260. # sync to MySQL
  261. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  262. data_columns = list(final_df.columns)
  263. mysql = MysqlHelper(CONFIG.MYSQL_GROWTH_INFO)
  264. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  265. def main_loop():
  266. argparser = ArgumentParser()
  267. argparser.add_argument('-n', '--dry-run', action='store_true')
  268. argparser.add_argument('--run-at', help='assume to run at date and hour, yyyyMMddHH')
  269. args = argparser.parse_args()
  270. run_date = datetime.today()
  271. if args.run_at:
  272. run_date = datetime.strptime(args.run_at, "%Y%m%d%H")
  273. LOGGER.info(f"Assume to run at {run_date.strftime('%Y-%m-%d %H:00')}")
  274. try:
  275. now_date = datetime.today()
  276. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  277. last_date = run_date - timedelta(1)
  278. last_dt = last_date.strftime("%Y%m%d")
  279. # 查看当前天级更新的数据是否已准备好
  280. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  281. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  282. if h_data_count > 0:
  283. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  284. run_dt = run_date.strftime("%Y%m%d")
  285. run_hour = run_date.strftime("%H")
  286. LOGGER.info(f'run_dt: {run_dt}, run_hour: {run_hour}')
  287. build_and_transfer_data(run_dt, run_hour, ODS_PROJECT,
  288. dry_run=args.dry_run)
  289. LOGGER.info('数据更新完成')
  290. else:
  291. LOGGER.info("上游数据未就绪,等待60s")
  292. Timer(60, main_loop).start()
  293. return
  294. except Exception as e:
  295. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  296. if CONFIG.ENV_TEXT == '开发环境' or args.dry_run:
  297. return
  298. send_msg_to_feishu(
  299. webhook=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('webhook'),
  300. key_word=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('key_word'),
  301. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  302. f"exception: {e}\n"
  303. f"traceback: {traceback.format_exc()}"
  304. )
  305. if __name__ == '__main__':
  306. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  307. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  308. main_loop()