123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- import datetime
- import traceback
- import multiprocessing
- from threading import Timer
- from my_utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
- from my_config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- redis_helper = RedisHelper()
- features = [
- 'apptype',
- 'videoid',
- 'ad_type', # 0: all, 1: 自营,2: 微信
- 'sharerate', # 被分享的概率
- 'no_ad_rate', # 不出广告的概率
- 'no_adrate_share', # 被分享的情况下且不出广告的概率
- 'ad_rate', # 出广告的概率
- 'adrate_share', # 被分享的情况下且出广告的概率
- ]
- def get_top10_abnormal_videos_return(dt, filter_param):
- """获取昨日各端top10中的异常视频(裂变视频)"""
- abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
- abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
- abnormal_video_features = [
- 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
- ]
- data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
- top10_abnormal_videos = {}
- if data_count > 0:
- abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
- features=abnormal_video_features, dt=dt)
- abnormal_video_df['multiple'].fillna(0, inplace=True)
- abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
- abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
- abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
- abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
- abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
- app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
- for app_type in app_type_list:
- app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
- app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
- # print(app_type_df)
- temp_video_id_list = []
- for index, item in app_type_df.iterrows():
- # print(item['rank'], item['videoid'], item['multiple'])
- if item['multiple'] > filter_param:
- # print(item['videoid'], item['multiple'])
- abnormal_video_id_list = temp_video_id_list.copy()
- abnormal_video_id_list.append(int(item['videoid']))
- top10_abnormal_videos[app_type] = abnormal_video_id_list
- temp_video_id_list.append(int(item['videoid']))
- else:
- temp_video_id_list.append(int(item['videoid']))
- # print(top10_abnormal_videos)
- log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
- return top10_abnormal_videos
- def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
- """预估视频有广告时被分享的概率"""
- # 获取对应的视频特征
- video_df = video_initial_df.copy()
- # 获取所有广告类型对应的数据
- video_df['ad_type'] = video_df['ad_type'].astype(int)
- video_df = video_df[video_df['ad_type'] == 0]
- video_df['apptype'] = video_df['apptype'].astype(int)
- video_df = video_df[video_df['apptype'] == int(data_param)]
- log_.info(f"video_df length: {len(video_df)}")
- # print(video_df)
- video_df['ad_rate'].fillna(0, inplace=True)
- video_df['sharerate'].fillna(0, inplace=True)
- video_df['adrate_share'].fillna(0, inplace=True)
- video_df['ad_rate'] = video_df['ad_rate'].astype(float)
- video_df['sharerate'] = video_df['sharerate'].astype(float)
- video_df['adrate_share'] = video_df['adrate_share'].astype(float)
- # 计算视频有广告时被分享率
- video_df = video_df[video_df['ad_rate'] != 0]
- # print(video_df)
- video_df['video_ad_share_rate'] = \
- video_df['adrate_share'] * video_df['sharerate'] / video_df['ad_rate']
- video_df['video_ad_share_rate'].fillna(0, inplace=True)
- # log_.info(f"video_df: {video_df}")
- # video_df = video_df[video_df['video_ad_share_rate'] != 0]
- log_.info(f"video_df filtered 0 length: {len(video_df)}")
- # 结果写入redis
- key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
- redis_data = {}
- for index, item in video_df.iterrows():
- redis_data[int(item['videoid'])] = item['video_ad_share_rate']
- # 剔除异常视频数据
- video_df['videoid'] = video_df['videoid'].astype(int)
- top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
- if top10_abnormal_video_ids is not None:
- video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
- group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
- redis_data[-1] = group_ad_share_rate_mean
- log_.info(f"redis_data count: {len(redis_data)}")
- if len(redis_data) > 0:
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
- return video_df
- def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
- """预估视频无广告时被分享的概率"""
- # 获取对应的视频特征
- video_df = video_initial_df.copy()
- # 获取所有广告类型对应的数据
- video_df['ad_type'] = video_df['ad_type'].astype(int)
- video_df = video_df[video_df['ad_type'] == 0]
- video_df['apptype'] = video_df['apptype'].astype(int)
- video_df = video_df[video_df['apptype'] == int(data_param)]
- log_.info(f"video_df length: {len(video_df)}")
- video_df['no_ad_rate'].fillna(0, inplace=True)
- video_df['sharerate'].fillna(0, inplace=True)
- video_df['no_adrate_share'].fillna(0, inplace=True)
- video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
- video_df['sharerate'] = video_df['sharerate'].astype(float)
- video_df['no_adrate_share'] = video_df['no_adrate_share'].astype(float)
- # 计算视频无广告时被分享率
- video_df = video_df[video_df['no_ad_rate'] != 0]
- video_df['video_no_ad_share_rate'] = \
- video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
- video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
- # log_.info(f"video_df: {video_df}")
- # video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
- log_.info(f"video_df filtered 0 length: {len(video_df)}")
- # 结果写入redis
- key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
- redis_data = {}
- for index, item in video_df.iterrows():
- redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
- # 剔除异常视频数据
- video_df['videoid'] = video_df['videoid'].astype(int)
- top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
- if top10_abnormal_video_ids is not None:
- video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
- group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
- redis_data[-1] = group_ad_share_rate_mean
- log_.info(f"redis_data count: {len(redis_data)}")
- if len(redis_data) > 0:
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
- return video_df
- def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
- """预估视频有广告时分享率"""
- # 获取视频特征
- video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
- for data_key, data_param in update_params.items():
- log_.info(f"data_key = {data_key} update start...")
- log_.info(f"predict_video_share_rate_with_ad start...")
- predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
- data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
- log_.info(f"predict_video_share_rate_with_ad end!")
- log_.info(f"predict_video_share_rate_no_ad start...")
- predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
- data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
- log_.info(f"predict_video_share_rate_no_ad end!")
- log_.info(f"data_key = {data_key} update end!")
- def timer_check(dt, video_key, video_params, top10_abnormal_videos):
- log_.info(f"video_key = {video_key}")
- project = config_.ad_model_data[video_key].get('project')
- table = config_.ad_model_data[video_key].get('table')
- # 查看当前更新的数据是否已准备好
- data_count = data_check(project=project, table=table, dt=dt)
- if data_count > 0:
- log_.info(f"ad video data count = {data_count}")
- # 数据准备好,进行更新
- update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
- top10_abnormal_videos=top10_abnormal_videos)
- log_.info(f"video_key = {video_key} ad video data update end!")
- msg_list = [
- f"env: rov-offline {config_.ENV_TEXT}",
- f"video_key: {video_key}",
- f"now_date: {dt}",
- f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
- ]
- send_msg_to_feishu_new(
- webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
- title='新策略 -- 广告模型视频分享率预测数据更新完成',
- msg_list=msg_list
- )
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
- def main():
- try:
- now_date = datetime.datetime.today()
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- log_.info(f"now_date: {dt}")
- # 获取昨天top10中的异常视频(裂变视频)
- top10_abnormal_videos = get_top10_abnormal_videos_return(
- dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
- )
- update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
- pool = multiprocessing.Pool(processes=len(update_params))
- for video_key, video_params in update_params.items():
- pool.apply_async(
- func=timer_check,
- args=(dt, video_key, video_params, top10_abnormal_videos)
- )
- pool.close()
- pool.join()
- # for video_key, video_params in update_params.items():
- # timer_check(dt, video_key, video_params, top10_abnormal_videos)
- except Exception as e:
- log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- msg_list = [
- f"env: rov-offline {config_.ENV_TEXT}",
- f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
- f"exception: {e}",
- f"traceback: {traceback.format_exc()}",
- ]
- send_msg_to_feishu_new(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- title='新策略 -- 广告模型视频分享率预测数据更新失败',
- msg_list=msg_list
- )
- if __name__ == '__main__':
- # timer_check()
- main()
|