ad_video_data_update.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. import datetime
  2. import traceback
  3. import multiprocessing
  4. from threading import Timer
  5. from my_utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
  6. from my_config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. features = [
  12. 'apptype',
  13. 'videoid',
  14. 'sharerate_all',
  15. 'sharerate_ad'
  16. ]
  17. features_new = [
  18. 'apptype',
  19. 'videoid',
  20. 'adrate',
  21. 'sharerate',
  22. 'adrate_share'
  23. ]
  24. features_with_out = [
  25. 'apptype',
  26. 'videoid',
  27. 'adrate', # 出广告的概率
  28. 'outrate', # 被直接跳出的概率
  29. 'adrate_out' # 被直接跳出时出广告的概率
  30. ]
  31. def get_top10_abnormal_videos_return(dt, filter_param):
  32. """获取昨日各端top10中的异常视频(裂变视频)"""
  33. abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
  34. abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
  35. abnormal_video_features = [
  36. 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
  37. ]
  38. data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
  39. top10_abnormal_videos = {}
  40. if data_count > 0:
  41. abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
  42. features=abnormal_video_features, dt=dt)
  43. abnormal_video_df['multiple'].fillna(0, inplace=True)
  44. abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
  45. abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
  46. abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
  47. abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
  48. abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
  49. app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
  50. for app_type in app_type_list:
  51. app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
  52. app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
  53. # print(app_type_df)
  54. temp_video_id_list = []
  55. for index, item in app_type_df.iterrows():
  56. # print(item['rank'], item['videoid'], item['multiple'])
  57. if item['multiple'] > filter_param:
  58. # print(item['videoid'], item['multiple'])
  59. abnormal_video_id_list = temp_video_id_list.copy()
  60. abnormal_video_id_list.append(int(item['videoid']))
  61. top10_abnormal_videos[app_type] = abnormal_video_id_list
  62. temp_video_id_list.append(int(item['videoid']))
  63. else:
  64. temp_video_id_list.append(int(item['videoid']))
  65. # print(top10_abnormal_videos)
  66. log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
  67. return top10_abnormal_videos
  68. def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  69. """预估视频有广告时分享率"""
  70. # 获取对应的视频特征
  71. video_df = video_initial_df.copy()
  72. video_df['apptype'] = video_df['apptype'].astype(int)
  73. video_df = video_df[video_df['apptype'] == int(data_param)]
  74. log_.info(f"video_df length: {len(video_df)}")
  75. video_df['sharerate_all'].fillna(0, inplace=True)
  76. video_df['sharerate_ad'].fillna(0, inplace=True)
  77. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  78. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  79. # 获取有广告时所有视频近30天的分享率
  80. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  81. video_df = video_df[video_df['videoid'] != 'allvideos']
  82. # 剔除异常视频数据
  83. video_df['videoid'] = video_df['videoid'].astype(int)
  84. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  85. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  86. if top10_abnormal_video_ids is not None:
  87. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  88. # print(len(video_df))
  89. # 计算视频有广告时分享率
  90. video_df['video_ad_share_rate'] = \
  91. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  92. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  93. # log_.info(f"video_df: {video_df}")
  94. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  95. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  96. # 结果写入redis
  97. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  98. redis_data = {}
  99. for index, item in video_df.iterrows():
  100. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  101. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  102. redis_data[-1] = group_ad_share_rate_mean
  103. # 异常视频给定值:mean/3
  104. if top10_abnormal_video_ids is not None:
  105. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  106. print(data_key, data_param, abnormal_video_param)
  107. for abnormal_video_id in top10_abnormal_video_ids:
  108. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  109. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  110. log_.info(f"redis_data count: {len(redis_data)}")
  111. if len(redis_data) > 0:
  112. redis_helper = RedisHelper()
  113. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  114. return video_df
  115. def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
  116. """预估视频有广告时分享率"""
  117. # 获取视频特征
  118. video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  119. for data_key, data_param in update_params.items():
  120. log_.info(f"data_key = {data_key} update start...")
  121. predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param,
  122. top10_abnormal_videos=top10_abnormal_videos)
  123. log_.info(f"data_key = {data_key} update end!")
  124. def predict_video_share_rate_new(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  125. """预估视频有广告时被分享率"""
  126. # 获取对应的视频特征
  127. video_df = video_initial_df.copy()
  128. video_df['apptype'] = video_df['apptype'].astype(int)
  129. video_df = video_df[video_df['apptype'] == int(data_param)]
  130. log_.info(f"video_df length: {len(video_df)}")
  131. video_df['adrate'].fillna(0, inplace=True)
  132. video_df['sharerate'].fillna(0, inplace=True)
  133. video_df['adrate_share'].fillna(0, inplace=True)
  134. video_df['adrate'] = video_df['adrate'].astype(float)
  135. video_df['sharerate'] = video_df['sharerate'].astype(float)
  136. video_df['adrate_share'] = video_df['adrate_share'].astype(float)
  137. # 剔除异常视频数据
  138. video_df['videoid'] = video_df['videoid'].astype(int)
  139. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  140. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  141. if top10_abnormal_video_ids is not None:
  142. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  143. # print(len(video_df))
  144. # 计算视频有广告时被分享率
  145. video_df = video_df[video_df['adrate'] != 0]
  146. video_df['video_ad_share_rate'] = \
  147. video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
  148. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  149. # log_.info(f"video_df: {video_df}")
  150. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  151. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  152. # 结果写入redis
  153. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  154. redis_data = {}
  155. for index, item in video_df.iterrows():
  156. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  157. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  158. redis_data[-1] = group_ad_share_rate_mean
  159. # 异常视频给定值:mean/3
  160. if top10_abnormal_video_ids is not None:
  161. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  162. print(data_key, data_param, abnormal_video_param)
  163. for abnormal_video_id in top10_abnormal_video_ids:
  164. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  165. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  166. log_.info(f"redis_data count: {len(redis_data)}")
  167. if len(redis_data) > 0:
  168. redis_helper = RedisHelper()
  169. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  170. return video_df
  171. def update_videos_data_new(project, table, dt, update_params, top10_abnormal_videos):
  172. """预估视频有广告时分享率"""
  173. # 获取视频特征
  174. video_initial_df = get_feature_data(project=project, table=table, features=features_new, dt=dt)
  175. for data_key, data_param in update_params.items():
  176. log_.info(f"data_key = {data_key} update start...")
  177. predict_video_share_rate_new(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
  178. data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
  179. log_.info(f"data_key = {data_key} update end!")
  180. def predict_video_out_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  181. """预估视频有广告时不被直接跳出的概率"""
  182. # 获取对应的视频特征
  183. video_df = video_initial_df.copy()
  184. video_df['apptype'] = video_df['apptype'].astype(int)
  185. video_df = video_df[video_df['apptype'] == int(data_param)]
  186. log_.info(f"video_df length: {len(video_df)}")
  187. video_df['adrate'].fillna(0, inplace=True)
  188. video_df['outrate'].fillna(0, inplace=True)
  189. video_df['adrate_out'].fillna(0, inplace=True)
  190. video_df['adrate'] = video_df['adrate'].astype(float)
  191. video_df['outrate'] = video_df['outrate'].astype(float)
  192. video_df['adrate_out'] = video_df['adrate_out'].astype(float)
  193. # 剔除异常视频数据
  194. video_df['videoid'] = video_df['videoid'].astype(int)
  195. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  196. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  197. if top10_abnormal_video_ids is not None:
  198. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  199. # print(len(video_df))
  200. # 计算视频有广告时被直接跳出的概率
  201. video_df = video_df[video_df['adrate'] != 0]
  202. video_df = video_df[video_df['adrate_out'] != 0]
  203. video_df['video_ad_out_rate'] = \
  204. video_df['adrate_out'] * video_df['outrate'] / video_df['adrate']
  205. video_df['video_ad_out_rate'].fillna(0, inplace=True)
  206. # 计算视频有广告时不被直接跳出的概率
  207. video_df['video_ad_no_out_rate'] = 1 - video_df['video_ad_out_rate']
  208. # print(len(video_df))
  209. # video_df = video_df[video_df['video_ad_no_out_rate'] != 0]
  210. # log_.info(f"video_df: {video_df}")
  211. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  212. # video_df = video_df[video_df['video_ad_no_out_rate'] != 1]
  213. # log_.info(f"video_df: {video_df}")
  214. # log_.info(f"video_df filtered 0 length: {len(video_df)}")
  215. # 结果写入redis
  216. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  217. redis_data = {}
  218. for index, item in video_df.iterrows():
  219. redis_data[int(item['videoid'])] = item['video_ad_no_out_rate']
  220. group_ad_out_rate_mean = video_df['video_ad_no_out_rate'].mean()
  221. redis_data[-1] = group_ad_out_rate_mean
  222. # 异常视频给定值:mean/3
  223. if top10_abnormal_video_ids is not None:
  224. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  225. print(data_key, data_param, abnormal_video_param)
  226. for abnormal_video_id in top10_abnormal_video_ids:
  227. print(abnormal_video_id, group_ad_out_rate_mean, group_ad_out_rate_mean * abnormal_video_param)
  228. redis_data[int(abnormal_video_id)] = group_ad_out_rate_mean * abnormal_video_param
  229. log_.info(f"redis_data count: {len(redis_data)}")
  230. if len(redis_data) > 0:
  231. redis_helper = RedisHelper()
  232. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  233. return video_df
  234. def update_videos_data_with_out(project, table, dt, update_params, top10_abnormal_videos):
  235. """预估视频有广告时被直接跳出的概率"""
  236. # 获取视频特征
  237. video_initial_df = get_feature_data(project=project, table=table, features=features_with_out, dt=dt)
  238. for data_key, data_param in update_params.items():
  239. log_.info(f"data_key = {data_key} update start...")
  240. predict_video_out_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
  241. data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
  242. log_.info(f"data_key = {data_key} update end!")
  243. def timer_check(dt, video_key, video_params, top10_abnormal_videos):
  244. log_.info(f"video_key = {video_key}")
  245. project = config_.ad_model_data[video_key].get('project')
  246. table = config_.ad_model_data[video_key].get('table')
  247. # 查看当前更新的数据是否已准备好
  248. data_count = data_check(project=project, table=table, dt=dt)
  249. if data_count > 0:
  250. log_.info(f"ad video data count = {data_count}")
  251. # 数据准备好,进行更新
  252. if video_key == 'videos_data_alladtype':
  253. update_videos_data_new(project=project, table=table, dt=dt, update_params=video_params,
  254. top10_abnormal_videos=top10_abnormal_videos)
  255. elif video_key == 'videos_data_with_out_alladtype':
  256. update_videos_data_with_out(project=project, table=table, dt=dt, update_params=video_params,
  257. top10_abnormal_videos=top10_abnormal_videos)
  258. else:
  259. update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
  260. top10_abnormal_videos=top10_abnormal_videos)
  261. log_.info(f"video_key = {video_key} ad video data update end!")
  262. msg_list = [
  263. f"env: rov-offline {config_.ENV_TEXT}",
  264. f"video_key: {video_key}",
  265. f"now_date: {dt}",
  266. f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  267. ]
  268. send_msg_to_feishu_new(
  269. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  270. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  271. title='广告模型视频分享率预测数据更新完成',
  272. msg_list=msg_list
  273. )
  274. else:
  275. # 数据没准备好,1分钟后重新检查
  276. Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
  277. def main():
  278. try:
  279. now_date = datetime.datetime.today()
  280. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  281. log_.info(f"now_date: {dt}")
  282. # 获取昨天top10中的异常视频(裂变视频)
  283. # top10_abnormal_videos = get_top10_abnormal_videos_return(
  284. # dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
  285. # )
  286. # 暂停1.5倍回流视频减少广告策略
  287. top10_abnormal_videos = {}
  288. update_params = config_.AD_VIDEO_DATA_PARAMS
  289. pool = multiprocessing.Pool(processes=len(update_params))
  290. for video_key, video_params in update_params.items():
  291. pool.apply_async(
  292. func=timer_check,
  293. args=(dt, video_key, video_params, top10_abnormal_videos)
  294. )
  295. pool.close()
  296. pool.join()
  297. # for video_key, video_params in update_params.items():
  298. # timer_check(dt, video_key, video_params, top10_abnormal_videos)
  299. except Exception as e:
  300. log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  301. msg_list = [
  302. f"env: rov-offline {config_.ENV_TEXT}",
  303. f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  304. f"exception: {e}",
  305. f"traceback: {traceback.format_exc()}",
  306. ]
  307. send_msg_to_feishu_new(
  308. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  309. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  310. title='广告模型视频分享率预测数据更新失败',
  311. msg_list=msg_list
  312. )
  313. if __name__ == '__main__':
  314. # timer_check()
  315. main()